Abstract

In this study, we compute and analyze the numerical solution of fractional coupled Boussinesq equations using fractional-order Laguerre operational matrices of differentiation. The fractional derivative is taken into Caputo's sense. In the first step, we derived a pseudo-operational matrix of differentiation for integer and fractional order. We approximated each term of the fractional coupled Boussinesq equations in terms of the pseudo-operational matrix. Hence, we get the fractional coupled Boussinesq equation in matrix representation. A system of algebraic equations is obtained by collocating this system at Newton–Cotes nodal points, which can be solved easily with Newton's iterative method. The function approximation error estimate has also been discussed. The proposed approach is simple, accurate and produces numerical results with high accuracy, which is evidenced by the given numerical results.

References

1.
Baleanu
,
D.
,
Ghassabzade
,
F.
,
Nieto
,
J.
, and
Jajarmi
,
A.
,
2022
, “
On a New and Generalized Fractional Model for a Real Cholera Outbreak
,”
Alexandria Eng. J.
,
61
(
11
), pp.
9175
9186
.10.1016/j.aej.2022.02.054
2.
Yadav
,
P.
,
Jahan
,
S.
, and
Nisar
,
K. S.
,
2024
, “
Analysis of Fractal-Fractional Alzheimer's Disease Mathematical Model in Sense of Caputo Derivative
,”
AIMS Public Health
,
11
(
2
), pp.
399
419
.10.3934/publichealth.2024020
3.
Nisar
,
K. S.
,
Farman
,
M.
,
Hincal
,
E.
, and
Shehzad
,
A.
,
2023
, “
Modelling and Analysis of Bad Impact of Smoking in Society With Constant proportional-Caputo Fabrizio Operator
,”
Chaos, Solitons Fractals
,
172
, p.
113549
.10.1016/j.chaos.2023.113549
4.
Oskouie
,
M. F.
,
Ansari
,
R.
, and
Rouhi
,
H.
,
2018
, “
Bending Analysis of Functionally Graded Nanobeams Based on the Fractional Nonlocal Continuum Theory by the Variational Legendre Spectral Collocation Method
,”
Meccanica
,
53
(
4–5
), pp.
1115
1130
.10.1007/s11012-017-0792-0
5.
Lazopoulos
,
K. A.
, and
Lazopoulos
,
A. K.
,
2020
, “
On the Fractional Deformation of a Linearly Elastic Bar
,”
J. Mech. Behav. Mater.
,
29
(
1
), pp.
9
18
.10.1515/jmbm-2020-0002
6.
Mohammadi
,
F. S.
,
Rahimi
,
Z.
,
Sumelka
,
W.
, and
Xiao-Jun
,
Y.
,
2019
, “
Investigation of Free Vibration and Buckling of Timoshenko Nano-Beam Based on a General Form of Eringen Theory Using Conformable Fractional Derivative and Galerkin Method
,”
Eng. Trans.
,
67
(
3
), pp.
347
367
10.24423/EngTrans.1001.20190426.
7.
Beda
,
P. B.
,
2017
, “
Dynamical Systems Approach of Internal Length in Fractional Calculus
,”
Eng. Trans.
,
65
(
1
), pp.
209
215
10.24423/engtrans.703.2017.
8.
Kotsamran
,
K.
,
Sudsutad
,
W.
,
Thaiprayoon
,
C.
,
Kongson
,
J.
, and
Alzabut
,
J.
,
2021
, “
Analysis of a Nonlinear ψ-Hilfer Fractional Integro-Differential Equation Describing Cantilever Beam Model With Nonlinear Boundary Conditions
,”
Fractal Fractional
,
5
(
4
), p.
177
.10.3390/fractalfract5040177
9.
Nisar
,
K. S.
,
Farman
,
M.
,
Abdel-Aty
,
M.
, and
Cao
,
J.
,
2023
, “
Mathematical Epidemiology: A Review of the Singular and Non-Singular Kernels and Their Applications
,”
Prog. Fractional Differ. Appl.
,
9
(
4
), pp.
507
544
.10.18576/pfda/090401
10.
Agrawal
,
O. P.
, and
Kumar
,
P.
,
2007
, “
Comparison of Five Numerical Schemes for Fractional Differential Equations
,”
Advances in Fractional Calculus
,
Springer
, Dordrecht, The Netherlands, pp.
43
60
.
11.
Sidhardh
,
S.
,
Patnaik
,
S.
, and
Semperlotti
,
S.
,
2021
, “
Fractional-Order Structural Stability: Formulation and Application to the Critical Load of Nonlocal Slender Structures
,”
Int. J. Mech. Sci.
,
201
, p.
106443
.10.1016/j.ijmecsci.2021.106443
12.
Lazopoulos
,
K.
, and
Lazopoulos
,
A.
, 2016 , “
On Fractional Bending of Beams
,”
Arch. Appl. Mech.
,
86
(
6
), pp.
1133
1145
10.1007/s00419-015-1083-7.
13.
Sumelka
,
W.
,
Blaszczyk
,
T.
, and
Liebold
,
C.
,
2015
, “
Fractional Euler-Bernoulli Beams: Theory, Numerical Study and Experimental Validation
,”
Eur. J. Mech. - A/Solids
,
54
, pp.
243
251
.10.1016/j.euromechsol.2015.07.002
14.
Stempin
,
P.
, and
Sumelka
,
W.
,
2020
, “
Space-Fractional Euler-Bernoulli Beam Model - Theory and Identification for Silver Nanobeam Bending
,”
Int. J. Mech. Sci.
,
186
, p.
105902
.10.1016/j.ijmecsci.2020.105902
15.
Sidhardh
,
S.
,
Patnaik
,
S.
, and
Semperlotti
,
S.
,
2020
, “
Geometrically Nonlinear Response of a Fractional-Order Nonlocal Model of Elasticity
,”
Int. J. Non-Linear Mech.
,
125
, p.
103529
.10.1016/j.ijnonlinmec.2020.103529
16.
Caputo
,
M.
,
1967
, “
Linear Models of Dissipation Whose Q is Almost Frequency Independent–II
,”
Geophys. J. Int.
,
13
(
5
), pp.
529
539
.10.1111/j.1365-246X.1967.tb02303.x
17.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
,
2002
, “
A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
,”
Nonlinear Dyn.
,
29
(
1/4
), pp.
3
22
.10.1023/A:1016592219341
18.
Kilbas
,
A.
, and
Trujillo
,
J.
,
2001
, “
Differential Equations of Fractional Order: Methods Results and problem-I
,”
Appl. Anal.
,
78
(
1–2
), pp.
153
192
.10.1080/00036810108840931
19.
Miller
,
K. S.
, and
Ross
,
B.
,
1993
,
An Introduction to the Fractional Calculus and Fractional Differential Equations
,
Wiley
, New York.
20.
Podlubny
,
I.
,
1999
, “
Fractional Differential Equations, Mathematics in Science and Engineering
,” Academic Press, San Diego, CA.
21.
Oldham
,
K.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order
,
Elsevier
, New York.
22.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
,
1993
,
Fractional Integrals and Derivatives
, Vol.
1
,
Gordon and Breach Science Publishers
,
Yverdon Yverdon-les-Bains, Switzerland
.
23.
Boussinesq
,
J.
,
1872
, “
Théorie Des Ondes et Des Remous Qui se Propagent le Long D'un Canal Rectangulaire Horizontal, en Communiquant au Liquide Contenu Dans ce Canal Des Vitesses Sensiblement Pareilles de la Surface au Fond
,”
J. Math. Pures Appl.
,
17
, pp.
55
108
http://www.numdam.org/item/JMPA_1872_2_17__55_0.pdf.
24.
Durur
,
H.
,
Tasbozan
,
O.
, and
Kurt
,
A.
,
2020
, “
New Analytical Solutions of Conformable Time Fractional Bad and Good Modified Boussinesq Equations
,”
Appl. Math. Nonlinear Sci.
,
5
(
1
), pp.
447
454
.10.2478/amns.2020.1.00042
25.
Yokuş
,
A.
, and
Kaya
,
D.
,
2015
, “
Conservation Laws and a New Expansion Method for Sixth Order Boussinesq Equation
,”
AIP Conf. Proc.
,
1676
, p.
020062
.10.1063/1.4930488
26.
Yokuş
,
A.
, and
Kaya
,
D.
,
2017
, “
Numerical and Exact Solutions for Time Fractional Burgers Equation
,”
J. Nonlinear Sci. Appl. (JNSA)
,
10
(
7
), pp.
3419
3428
.10.22436/jnsa.010.07.06
27.
Sarhan
,
A.
,
Burqan
,
A.
,
Saadeh
,
R.
, and
Al-Zhour
,
Z.
,
2022
, “
Analytical Solutions of the Nonlinear Time-Fractional Coupled Boussinesq-Burger Equations Using Laplace Residual Power Series Technique
,”
Fractal Fractional
,
6
(
11
), p.
631
.10.3390/fractalfract6110631
28.
Cozzolino
,
L.
,
Pepe
,
V.
,
Cimorelli
,
L.
,
D'Aniello
,
A.
,
Della Morte
,
R.
, and
Pianese
,
D.
,
2018
, “
The Solution of the Dam-Break Problem in the Porous Shallow Water Equations
,”
Adv. Water Resour.
,
114
, pp.
83
101
.10.1016/j.advwatres.2018.01.026
29.
Chen
,
S.
,
Li
,
Y.
,
Li
,
Y.
,
Guan
,
B.
, and
Liu
,
Y.
,
2021
, “
Variant Wave Propagation Patterns by Coupled Bossinesq Equations
,”
Results Phys.
,
24
, p.
104147
.10.1016/j.rinp.2021.104147
30.
Eslami
,
M.
, and
Mirzazadeh
,
M.
,
2014
, “
First Integral Method to Look for Exact Solutions of a Variety of Boussinesq-Like Equations
,”
Ocean Eng.
,
83
, pp.
133
137
.10.1016/j.oceaneng.2014.02.026
31.
Jawad
,
A.
,
Petkovic
,
M.
,
Laketa
,
P.
, and
Biswas
,
A.
,
2013
, “
Dynamics of Shallow Water Waves With Boussinesq Equation
,”
Sci. Iran.
,
20
(
1
), pp.
179
184
10.1016/j.scient.2012.12.011.
32.
Sachs
,
R. L.
,
1988
, “
On the Integrable Variant of the Boussinesq System: Painlevé Property, Rational Solutions, a Related Many-Body System, and Equivalence With the AKNS Hierarchy
,”
Phys. D
,
30
(
1–2
), pp.
1
27
.10.1016/0167-2789(88)90095-4
33.
Gao
,
H.
,
Xu
,
T.
,
Yang
,
S.
, and
Wang
,
G.
,
2017
, “
Analytical Study of Solitons for the Variant Boussinesq Equations
,”
Nonlinear Dyn.
,
88
(
2
), pp.
1139
1146
.10.1007/s11071-016-3300-5
34.
Wang
,
M.
,
Zhou
,
Y.
, and
Li
,
Z.
,
1996
, “
Application of a Homogeneous Balance Method to Exact Solutions of Nonlinear Equations in Mathematical Physics
,”
Phys. Lett. A
,
216
(
1–5
), pp.
67
75
.10.1016/0375-9601(96)00283-6
35.
Guo
,
P.
,
Wu
,
X.
, and
Wang
,
L-B.
,
2015
, “
Multiple Soliton Solutions for the Variant Boussinesq Equations
,”
Adv. Differ. Equations
,
2015
(
1
), pp.
1
11
10.1186/s13662-015-0371-4.
36.
Silambarasan
,
R.
, and
Nisar
,
K. S.
,
2023
, “
Doubly Periodic Solutions and Non-Topological Solitons of (2 + 1)-Dimension Wazwaz Kaur Boussinesq Equation Employing Jacobi Elliptic Function Method
,”
Chaos, Solitons Fractals
,
175
, p.
113997
.10.1016/j.chaos.2023.113997
37.
Hussain
,
A.
,
Zia
,
M. K.
,
Nisar
,
K. S.
,
Vijayakumar
,
V.
, and
Khan
,
I.
,
2022
, “
Lie Analysis, Conserved Vectors, Nonlinear Self-Adjoint Classification and Exact Solutions of Generalized (N+1)-Dimensional Nonlinear Boussinesq Equation
,”
AIMS Math.
,
7
(
7
), pp.
13139
13168
.10.3934/math.2022725
38.
Wu
,
W.
,
1986
, “
On Zeros of Algebraic equations-An Application of Ritt Principle
,”
Chin. Sci. Bull.
,
31
(
1
), pp.
1
5
.
39.
Yan
,
Z.
, and
Zhang
,
H.
,
1999
, “
New Explicit and Exact Travelling Wave Solutions for a System of Variant Boussinesq Equations in Mathematical Physics
,”
Phys. Lett. A
,
252
(
6
), pp.
291
296
.10.1016/S0375-9601(98)00956-6
40.
Sulaiman
,
T. A.
,
Bulut
,
H.
,
Yokus
,
A.
, and
Baskonus
,
H.
,
2019
, “
On the Exact and Numerical Solutions to the Coupled Boussinesq Equation Arising in Ocean Engineering
,”
Indian J. Phys.
,
93
(
5
), pp.
647
656
.10.1007/s12648-018-1322-1
41.
Zhou
,
Y.
, and
Zhang
,
Y.
,
2020
, “
Noether Symmetries for Fractional Generalized Birkhoffian Systems in Terms of Classical and Combined Caputo Derivatives
,”
Acta Mech.
,
231
(
7
), pp.
3017
3029
.10.1007/s00707-020-02690-y
42.
Sumelka
,
W.
,
Łuczak
,
B.
,
Gajewski
,
T.
, and
Voyiadjis
,
G. Z.
,
2020
, “
Modelling of AAA in the Framework of Time-Fractional Damage Hyperelasticity
,”
Int. J. Solids Struct.
,
206
, pp.
30
42
.10.1016/j.ijsolstr.2020.08.015
43.
Khatun
,
M. A.
,
Arefin
,
M. A.
,
Uddin
,
M. H.
,
Baleanu
,
D.
,
Akbar
,
M. A.
, and
Inc
,
M.
,
2021
, “
Explicit Wave Phenomena to the Couple Type Fractional Order Nonlinear Evolution Equations
,”
Results Phys.
,
28
, p.
104597
.10.1016/j.rinp.2021.104597
44.
Botmart
,
T.
,
Agarwal
,
R.
,
Naeem
,
M.
,
Khan
,
A.
, and
Shah
,
R.
,
2022
, “
On the Solution of Fractional Modified Boussinesq and Approximate Long Wave Equations With Non-Singular Kernel Operators
,”
AIMS Math.
,
7
(
7
), pp.
12483
12513
.10.3934/math.2022693
45.
Lanczos
,
C.
,
1938
, “
Trigonometric Interpolation of Empirical and Analytical Functions
,”
J. Math. Phys.
,
17
(
1–4
), pp.
123
199
.10.1002/sapm1938171123
46.
Kumar
,
S.
, and
Gupta
,
V.
,
2023
, “
An Approach Based on Fractional-Order Lagrange Polynomials for the Numerical Approximation of Fractional Order Non-Linear Volterra-Fredholm Integro-Differential Equations
,”
J. Appl. Math. Comput.
,
69
(
1
), pp.
251
272
10.1007/s12190-022-01743-w.
47.
Kumar
,
S.
,
Gupta
,
V.
, and
Gómez-Aguilar
,
J.
,
2022
, “
An Efficient Operational Matrix Technique to Solve the Fractional Order Non-Local Boundary Value Problems
,”
J. Math. Chem.
,
60
(
8
), pp.
1463
1479
.10.1007/s10910-022-01368-1
48.
Kashkari
,
B. S.
, and
Syam
,
M. I.
,
2016
, “
Fractional-Order Legendre Operational Matrix of Fractional Integration for Solving the Riccati Equation With Fractional Order
,”
Appl. Math. Comput.
,
290
, pp.
281
291
10.1016/j.amc.2016.06.003.
49.
Kumar
,
S.
,
Gupta
,
V.
,
Kumar
,
A.
, and
Gómez-Aguilar
,
J. F.
,
2023
, “
An Accurate Operational Matrix Method Based on Lagrange Polynomials for Solving Fractional-Order Pantograph Delay and Riccati Differential Equations
,”
Phys. Scr.
,
98
(
4
), p.
044005
.10.1088/1402-4896/acc0a8
50.
Hashemi
,
M.
, and
Balmeh
,
Z.
,
2018
, “
On Invariant Analysis and Conservation Laws of the Time Fractional Variant Boussinesq and Coupled Boussinesq-Burger's Equations
,”
Eur. Phys. J. Plus
,
133
(
10
), pp.
1
11
.10.1140/epjp/i2018-12289-1
51.
He
,
J.
, and
Shang
,
P.
,
2018
, “
Multidimensional Scaling Analysis of Financial Stocks Based on Kronecker-Delta Dissimilarity
,”
Commun. Nonlinear Sci. Numer. Simul.
,
63
, pp.
186
201
.10.1016/j.cnsns.2018.03.018
52.
Dehestani
,
H.
,
Ordokhani
,
Y.
, and
Razzaghi
,
M.
,
2018
, “
Fractional-Order Legendre–Laguerre Functions and Their Applications in Fractional Partial Differential Equations
,”
Appl. Math. Comput.
,
336
, pp.
433
453
10.1016/j.amc.2018.05.017.
53.
Phillips
,
G. M.
, and
Taylor
,
P. J.
,
1996
,
Theory and Applications of Numerical Analysis
,
Elsevier
, Amsterdam, The Netherlands.
You do not currently have access to this content.