Abstract

In the process of long horizontal well in directional drilling, serious contact between drill string and wellbore leads to weight on bit loss. Therefore, this paper proposes a drill string rotary controller (DSC) for directional well, and its function test is completed through the experimental platform. Connected DSC working mechanism, a drill string coupling dynamic model is established under conditions of horizontal well in directional drilling. In the case study, the coupling dynamic characteristics of different units, including drill pipes and bottom-of-hole modules in axial and torsional directions, are studied. The results show that the effective value of drilling rate increases while the axial vibration velocity and amplitude of drill bit decreases. Moreover, in torsional direction, when drill string system is stable state, the rotating angular velocity of different drill pipes, rotary table, and collar is 31.16 rad/s, and the angular velocity of drill bit is 43.19 rad/s, respectively. It indicates the DSC working performance, which enhances the drilling system balance capacity. Overall, different from the sliding friction between wellbore and drill string, the addition of DSC realizes the separation and meshing of drill string and bottom hole modules, which can significantly increase the transition efficiency of weight on bit and torque value. Theoretical and experimental researches prove that the tool can effectively solve the problem of serious weight on bit loss in directional drilling process, and provides a new reference and idea for developing directional drilling technology when facing new challenges.

References

1.
Liexiang
,
H.
, and
Jichuan
,
Z.
,
2018
, “
Application Evaluation of Pipe Rock Drill String Twist System
,”
Natural Gas Ind.
,
38
(
11
), pp.
73
78
.
2.
Tian
,
J.
,
Xiong
,
C.
,
Yang
,
Y.
,
Song
,
H.
, and
Mao
,
L.
,
2022
, “
Dynamic Characteristics Analysis of Hydraulic Clutch Controller in Directional Wells
,”
J. Braz. Soc. Mech. Sci. Eng.
,
44
(
9
), p. 398.10.1007/s40430-022-03710-9
3.
Oyedere, M., and Gray, K. E., 2020, “New Approach to Stiff-String Torque and Drag Modeling for Well Planning,”
ASME J. Energy Resour. Technol.
, 142(10), p. 103004.10.1115/1.4047016
4.
Haiyang
,
T.
, and
Jie
,
X.
,
2019
, “
Screw Drills With Large Bend Angle Through Window Through Capacity Analysis
,”
Pet. Mach.
,
47
(
7
), pp.
43
47
.
5.
Liu
,
Y. S.
, and
Gao
,
D. L.
,
2017
, “
A Nonlinear Dynamic Model for Characterizing Downhole Motions of Drill-String in a Deviated Well
,”
J. Nat. Gas Sci. Eng.
,
38
, pp.
466
474
.10.1016/j.jngse.2017.01.006
6.
Jinling
,
D.
, and
Linrong
,
W.
,
2008
, “
Anti-Torqueless Drilling Rigs and Torque Balance Analysis
,”
Pet. Drill. Technol.
,
2008
(1), pp.
53
57
.
7.
Mahdi
,
S. M.
, and
Moradi
,
H.
,
2019
, “
N1onlinear Multivariable Modeling and Stability Analysis of Vibrations in Horizontal Drill String
,”
Appl. Math. Modell.
,
71
, pp.
525
542
.10.1016/j.apm.2019.02.041
8.
Kessai
,
I.
,
Benammar
,
S.
, and
Doghmane
,
M. Z.
,
2022
, “
Dynamic Failure Analysis and Lifetime Estimation of Tool-String in Rotary Drilling System Under Torsional-Axial Coupled Vibrations
,”
Eng. Failure Anal.
,
134
, p.
106037
.10.1016/j.engfailanal.2022.106037
9.
Tian
,
J.
,
Zhou
,
Y.
,
Yang
,
L.
, and
Hu
,
S.
,
2020
, “
Analysis of Stick-Slip Reduction for a New Torsional Vibration Tool Based on PID Control
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
234
(
1
), pp.
82
94
.10.1177/1464419319876397
10.
Christoforou
,
A. P.
, and
Yigit
,
A. S.
,
2003
, “
Fully Coupled Vibrations of Actively Controlled Drillstrings
,”
J. Sound Vib.
,
267
(
5
), pp.
1029
1045
.10.1016/S0022-460X(03)00359-6
11.
Tengesdal
,
N. K.
,
Hovda
,
S.
, and
Holden
,
C.
,
2021
, “
A Discussion on the Decoupling Assumption of Axial and Torsional Dynamics in Bit-Rock Models
,”
J. Pet. Sci. Eng.
,
202
, p.
108070
.10.1016/j.petrol.2020.108070
12.
Nandakumar
,
K.
, and
Wiercigroch
,
M.
,
2013
, “
Galerkin Projections for State-Dependent Delay Differential Equations With Applications to Drilling
,”
Appl. Math. Modell.
,
37
(
4
), pp.
1705
1722
.10.1016/j.apm.2012.04.038
13.
Aarsnes
,
U. J. F.
, and
van de Wouw
,
N.
,
2019
, “
Axial and Torsional Self-Excited Vibrations of a Distributed Drill-String
,”
J. Sound Vib.
,
444
(
1
), pp.
127
151
.10.1016/j.jsv.2018.12.028
14.
Moharrami
,
M. J.
,
Martins
,
C. D A.
, and
Shiri
,
H.
,
2021
, “
Nonlinear Integrated Dynamic Analysis of Drill Strings Under Stick-Slip Vibration
,”
Appl. Ocean Res.
,
108
, p.
102521
.10.1016/j.apor.2020.102521
15.
Tian
,
J.
,
Yang
,
Y.
,
Dai
,
L.
, and
Yang
,
L.
,
2021
, “
Dynamics and Anti-Friction Characteristics Study of Horizontal Drill String Based on New Anti-Friction Tool
,”
Int. J. Green Energy
,
18
(
7
), pp.
720
730
.10.1080/15435075.2021.1880909
16.
Tian
,
J.
,
Yang
,
Y.
,
Dai
,
L.
, and
Lin
,
X.
,
2018
, “
Kinetic Characteristics Analysis of a New Torsional Oscillator Based on Impulse Response
,”
Archive Appl. Mech.
,
88
(
10
), pp.
1877
1891
.10.1007/s00419-018-1412-8
17.
Saksala
,
T.
,
Fourmeau
,
M.
,
Kane
,
P.-A.
, and
Hokka
,
M.
,
2018
, “
3D Finite Elements Modelling of Percussive Rock Drilling: Estimation of Rate of Penetration Based on Multiple Impact Simulations With a Commercial Drill Bit
,”
Comput. Geotech.
,
99
, pp.
55
63
.10.1016/j.compgeo.2018.02.006
18.
Tan
,
L.
,
Gao
,
D.
,
Zhou
,
J.
,
Liu
,
Y.
, and
Wang
,
Z.
,
2018
, “
Casing Wear Prediction Model Based on Drill String Whirling Motion in Extended-Reach Drilling
,”
Arabian J. Sci. Eng.
,
43
(
11
), pp.
6325
6332
.10.1007/s13369-018-3074-9
19.
Cruz
,
C.
, and
Miranda
,
E.
,
2017
, “
Evaluation of the Rayleigh Damping Model for Buildings
,”
Eng. Struct.
,
138
, pp.
324
336
.10.1016/j.engstruct.2017.02.001
20.
de Moraes
,
L. P. P.
, and
Savi
,
M. A.
,
2019
, “
Drill-String Vibration Analysis Considering an Axial-Torsional-Lateral Nonsmooth Model
,”
J. Sound Vib.
,
438
, pp.
220
237
.10.1016/j.jsv.2018.08.054
21.
Xie
,
Z.
,
Jiao
,
J.
, and
Wrona
,
S.
,
2023
, “
The Fluid-Structure Interaction Lubrication Performances of a Novel Bearing: Experimental and Numerical Study
,”
Tribol. Int.
,
179
, p.
108151
.10.1016/j.triboint.2022.108151
22.
Xie
,
Z.
,
Jiao
,
J.
, and
Yang
,
K.
,
2023
, “
Experimental and Numerical Study on the Mixed Lubrication Performances of a New Bearing
,”
Tribol. Int.
,
182
, p.
108334
.10.1016/j.triboint.2023.108334
23.
Volpi
,
L. P.
,
Lobo
,
D. M.
, and
Ritto
,
T. G.
,
2021
, “
A Stochastic Analysis of the Coupled Lateral–Torsional Drill String Vibration
,”
Nonlinear Dyn.
,
103
(
1
), pp.
49
62
.10.1007/s11071-020-06099-z
24.
Bakhtiari-Nejad
,
F.
, and
Hosseinzadeh
,
A.
,
2017
, “
Nonlinear Dynamic Stability Analysis of the Coupled Axial-Torsional Motion of the Rotary Drilling Considering the Effect of Axial Rigid-Body Dynamics
,”
Int. J. Non-Linear Mech.
,
88
, pp.
85
96
.10.1016/j.ijnonlinmec.2016.10.011
25.
Al-Hiddabi
,
S. A.
,
Samanta
,
B.
, and
Seibi
,
A.
,
2003
, “
Non-Linear Control of Torsional and Bending Vibrations of Oilwell Drillstrings
,”
J. Sound Vib.
,
265
(
2
), pp.
401
415
.10.1016/S0022-460X(02)01456-6
You do not currently have access to this content.