Abstract

Hydralic dampers are widely implemented in railway vehicle suspension stages, especially in high-speed passenger trains. They are designed to be mounted in different positions to improve comfort, stability, and safety performances. Numerical simulations are often used to assist the design and optimization of these components. Unfortunately, hydraulic dampers are highly nonlinear due to the complex fluid dynamic phenomena taking place inside the chambers and through the by-pass orifices. This requires accurate damper models to be developed to estimate the influence of the nonlinearities of such components during the dynamic performances of the whole vehicle. This work aims at presenting a new parametric damper model based on a nonlinear lumped element approach. Moreover, a new model tuning procedure will be introduced. Differently from the typical sinusoidal characterization cycles, this routine is based on experimental tests of real working conditions. The set of optimal model parameters will be found through a metaheuristic iterative approach able to minimize the differences between numerical and experimental damper forces. The performances of the optimal model will be compared with the ones of the most common Maxwell model generally implemented in railway multibody software programs.

References

1.
Iwnicki
,
S.
,
2006
,
Handbook of Railway Vehicle Dynamics
,
CRC Press
,
Taylor & Francis
, London.
2.
Ripamonti
,
F.
, and
Chiarabaglio
,
A.
,
2019
, “
A Smart Solution for Improving Ride Comfort in High-Speed Railway Vehicles
,”
J. Vib. Control
,
25
(
13
), pp.
1958
1973
.10.1177/1077546319843377
3.
Evans
,
J.
, and
Berg
,
M.
,
2009
, “
Challenges in Simulation of Rail Vehicle Dynamics
,”
Veh. Syst. Dyn.
,
47
(
8
), pp.
1023
1048
.10.1080/00423110903071674
4.
Bruni
,
S.
,
Vinolas
,
J.
,
Berg
,
M.
,
Polach
,
O.
, and
Stichel
,
S.
,
2011
, “
Modelling of Suspension Components in a Rail Vehicle Dynamics Context
,”
Veh. Syst. Dyn.
,
49
(
7
), pp.
1021
1072
.10.1080/00423114.2011.586430
5.
Dumitriu
,
M.
,
2022
, “
Study on the Effect of Damping Asymmetry of the Vertical Suspension on the Railway Bogie Vibrations
,”
Symmetry
,
14
(
2
), p.
327
.10.3390/sym14020327
6.
Alonso
,
A.
,
Gimenez
,
J.
, and
Gomez
,
E.
,
2011
, “
Yaw Damper Modelling and Its Influence on Railway Dynamic Stability
,”
Veh. Syst. Dyn.
,
49
(
9
), pp.
1367
1387
.10.1080/00423114.2010.515031
7.
Wrang
,
M.
,
1999
, “
Instability Phenomena of a Passenger Coach, Caused by Internal Yaw Damper Flexibility
,”
Veh. Syst. Dyn.
,
33
(
sup1
), pp.
406
417
.10.1080/00423114.1999.12063099
8.
Huang
,
C.
, and
Zeng
,
J.
,
2022
, “
Comparison of the Maxwell Model and a Simplified Physical Model for a Railway Yaw Damper in Damping Characteristics and Vehicle Stability Assessment
,”
Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit
, 236(3), pp.
275
287
.10.1177/09544097211020582
9.
Bruni
,
S.
,
Belforte
,
P.
,
Cera
,
A.
,
Hartwig
,
H.
,
Mancini
,
G.
, and
Mazzola
,
L.
,
2008
, “
Experimental Investigation of Yaw Damper Performances: An Improved and Harmonised Testing Methodology Developed Within ModTrain EU Project
,”
Eighth World Congress on Railway Research (WCRR 2008)
.
10.
Polach
,
O.
, and
Kaiser
,
I.
,
2012
, “
Comparison of Methods Analyzing Bifurcation and Hunting of Complex Rail Vehicle Models
,”
ASME J. Comput. Nonlinear Dynam
,
7
(
4
), p.
041005
.10.1115/1.4006825
11.
Dumitriu
,
M.
, and
Stănică
,
D. I.
,
2020
, “
Effect of the Anti-Yaw Damper on Carbody Vertical Vibration and Ride Comfort of Railway Vehicles
,”
Appl. Sci.
,
10
(
22
), p.
8167
.10.3390/app10228167
12.
Chen
,
J.
,
Wu
,
Y.
,
He
,
X.
,
Zhang
,
L.
, and
Dong
,
S.
,
2020
, “
Suspension Parameter Design of Underframe Equipment Considering Series Stiffness of Schock Absorber
,”
Adv. Mech. Eng.
,
12
(
5
), p.
168781402092264
.10.1177/1687814020922647
13.
Isacchi
,
G.
,
Ripamonti
,
F.
, and
Corsi
,
M.
,
2022
, “
Innovative Passive Yaw Damper to Increase the Stability and Curve-Taking Performance of High-Speed Railway Vehicles
,”
Veh. Syst. Dyn.
, epub, pp.
1
19
.10.1080/00423114.2022.2105242
14.
Greco
,
R.
, and
Marano
,
G. C.
,
2015
, “
Identification of Parameters of Maxwell and Kelvin–Voigt Generalized Models for Fluid Viscous Dampers
,”
J. Vib. Control
,
21
(
2
), pp.
260
274
.10.1177/1077546313487937
15.
Greco
,
R.
,
Avakian
,
J.
, and
Marano
,
G. C.
,
2014
, “
A Comparative Study on Parameter Identification of Fluid Viscous Dampers With Different Models
,”
Archive Appl. Mech.
,
84
(
8
), pp.
1117
1134
.10.1007/s00419-014-0869-3
16.
Guo
,
J.
,
Li
,
Z.
, and
Zhang
,
M.
,
2021
, “
Parameter Identification of the Phenomenological Model for Magnetorheological Fluid Dampers Using Hierarchic Enhanced Particle Swarm Optimization
,”
J. Mech. Sci. Technol.
,
35
(
3
), pp.
875
887
.10.1007/s12206-021-0202-3
17.
Rodríguez-Torres
,
A.
,
López-Pacheco
,
M.
,
Morales-Valdez
,
J.
,
Yu
,
W.
, and
Díaz
,
J. G.
,
2022
, “
Robust Force Estimation for Magnetorheological Damper Based on Complex Value Convolutional Neural Network
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
12
), p.
121003
.10.1115/1.4055731
18.
Rosmazi
,
R.
, and
Zamri
,
M.
,
2020
, “
Optimization of Modified Bouc–Wen Model for Magnetorheological Damper Using Modified Cuckoo Search Algorithm
,”
J. Vib. Control
,
27
(
17–18
), pp.
1956
1967
.10.1177/1077546320951383
19.
Negash
,
B. A.
,
You
,
W.
,
Lee
,
J.
, and
Lee
,
K.
,
2020
, “
Parameter Identification of Bouc-Wen Model for Magnetorheological (MR) Fluid Damper by a Novel Genetic Algorithm
,”
Adv. Mech. Eng.
,
12
(
8
), p.
168781402095054
.10.1177/1687814020950546
20.
Chen
,
X.
,
Xu
,
L.
,
Zhang
,
S.
,
Zhao
,
S.
, and
Liu
,
K.
,
2022
, “
Parameter Identification of the Bouc-Wen Model for the Magnetorheological Damper Using Fireworks Algorithm
,”
J. Mech. Sci. Technol.
,
36
(
5
), pp.
2213
2224
.10.1007/s12206-022-0405-2
21.
Yang
,
X.-S.
,
2010
, “
Firefly Algorithms for Multimodal Optimization
,”
Proceedings of the 5th International Conference on Stochastic Algorithms: Foundations and Applications
, Sapporo, Oct. 26–28, pp.
169
178
.10.1007/978-3-642-04944-6_14
22.
Teng
,
W.
,
Shi
,
H.
,
Luo
,
R.
,
Zeng
,
J.
, and
Huang
,
C.
,
2019
, “
Improved Nonlinear Model of a Yaw Damper for Simulating the Dynamics of a High-Speed Train
,”
Proc. Inst. Mech. Eng., Part F
,
233
(
7
), pp.
651
665
.10.1177/0954409718804414
23.
Conde Mellado
,
A.
,
Gomez
,
E.
, and
Vinolas
,
J.
,
2006
, “
Advances on Railway Yaw Damper Characterization Exposed to Small Displacements
,”
Int. J. Heavy Veh. Syst.
,
13
(
4
), p.
263
.10.1504/IJHVS.2006.010583
24.
Knothe
,
K.
, and
Stichel
,
S.
,
2017
,
Rail Vehicle Dynamics
,
Springer
, Cham, Switzerland.
25.
Bergander
,
B.
, and
Kunnes
,
W.
,
1993
, “
ERRI B176/DT 290: B176/3 Benchmark Problem, Results and Assessment: Technical Report
,”
European Rail Research Institute, Technical Report
.
26.
Isacchi
,
G.
,
Ripamonti
,
F.
,
Corsi
,
M.
, and
Van Dongen
,
T.
,
2022
, “
A Smart Passive Yaw Damper for the Reduction of Lateral Contact Forces in Low-Radius Curved Tracks
,”
WCCM-APCOM2022
,
Yokohama
, Aug.10.23967/wccmapcom.2022.074
27.
Huang
,
C.
, and
Zeng
,
J.
,
2018
, “
Dynamic Behaviour of a High-Speed Train Hydraulic Yaw Damper
,”
Veh. Syst. Dyn.
,
56
(
12
), pp.
1922
1944
.10.1080/00423114.2018.1439588
You do not currently have access to this content.