Abstract

Fixed-time synchronization of fractional-order multilayer complex networks is studied in this paper. At first, a novel fixed-time stability theorem for the fractional-order nonlinear system is presented. The stability theorem is a generalization of the integer order stability theorem and plays an important role on the synchronization schemes. Based on the proposed stability theorem, the fixed-time synchronization of fractional-order multilayer complex networks is investigated, and a fixed-time synchronization criterion is presented. Simulation results are given to demonstrate the effectiveness of our results.

References

1.
Gong
,
S. Q.
,
Guo
,
Z. Y.
,
Wen
,
S. P.
, and
Huang
,
T. W.
,
2021
, “
Finite-Time and Fixed-Time Synchronization of Coupled Memristive Neural Networks With Time Delay
,”
IEEE Trans. Cybern.
,
51
(
6
), pp.
2944
2955
.10.1109/TCYB.2019.2953236
2.
Radicchi
,
F.
, and
Arenas
,
A.
,
2013
, “
Abrupt Transition in the Structural Formation of Interconnected Networks
,”
Nat. Phys.
,
9
(
11
), pp.
717
720
.10.1038/nphys2761
3.
Dabiri
,
A.
,
Karimi Chahrogh
,
L.
, and
Tenreiro Machado
,
J. A.
,
2021
, “
Consensus of Incommensurate-Order Fractional Multiagent Systems With a Fixed-Length Memory
,”
2021 American Control Conference (ACC)
,
New Orleans, LA
,
May 25–28
, pp.
3320
3325
.10.23919/ACC50511.2021.9482872
4.
Yin
,
X.
,
Yue
,
D.
, and
Hu
,
S.
,
2013
, “
Consensus of Fractional-Order Heterogeneous Multi-Agent Systems
,”
IET Control Theory Appl.
,
7
(
2
), pp.
314
322
.10.1049/iet-cta.2012.0511
5.
Syed Ali
,
M.
,
Narayanan
,
G.
,
Saroha
,
S.
,
Priya
,
B.
, and
Thakur
,
G. K.
,
2021
, “
Finite-Time Stability Analysis of Fractional-Order Memristive Fuzzy Cellular Neural Networks With Time Delay and Leakage Term
,”
Math. Comput. Simul.
,
185
, pp.
468
485
.10.1016/j.matcom.2020.12.035
6.
Zhang
,
X.
,
Tang
,
L. K.
, and
,
J. H.
,
2020
, “
Synchronization Analysis on Two-Layer Networks of Fractional-Order Systems: Intraiayer and Interiayer Synchronization
,”
IEEE Trans. Circuits Syst.
,
67
(
7
), pp.
2397
2408
.10.1109/TCSI.2020.2971608
7.
Yang
,
S.
,
Hu
,
C.
,
Yu
,
J.
, and
Jiang
,
H. J.
,
2021
, “
Projective Synchronization in Finite-Time for Fully Quaternion-Valued Memristive Networks With Fractional-Order, Chaos
,”
Solitons Fractals
,
147
, p.
110911
.10.1016/j.chaos.2021.110911
8.
Wu
,
X. F.
,
Bao
,
H. B.
, and
Cao
,
J. D.
,
2021
, “
Finite-Time Inter-Layer Projective Synchronization of Caputo Fractional-Order Two-Layer Networks by Sliding Mode Control
,”
J. Franklin Inst.
,
358
(
1
), pp.
1002
1020
.10.1016/j.jfranklin.2020.10.043
9.
Wu
,
X. F.
, and
Bao
,
H. B.
,
2020
, “
Finite Time Complete Synchronization for Fractional-Order Multiplex Networks
,”
Appl. Math. Comput.
,
377
, p.
125188
.
10.
Yang
,
Y.
,
Hu
,
C.
,
Yu
,
J.
,
Jiang
,
H.
, and
Wen
,
S.
,
2021
, “
Synchronization of Fractional-Order Spatiotemporal Complex Networks With Boundary Communication
,”
Neurocomputing
,
450
, pp.
197
207
.10.1016/j.neucom.2021.04.008
11.
Stamova
,
I.
, and
Stamov
,
G.
,
2017
, “
Mittag-Leffler Synchronization of Fractional Neural Networks With Time-Varying Delays and Reaction-Diffusion Terms Using Impulsive and Linear Controllers
,”
Neural Networks
,
96
, pp.
22
32
.10.1016/j.neunet.2017.08.009
12.
Soriano-SáNchez
,
A. G.
,
Posadas-Castillo
,
C.
,
Platas-Garza
,
M. A.
, and
Arellano-Delgado
,
A.
,
2018
, “
Synchronization and FPGA Realization of Complex Networks With Fractional - Order Liu Chaotic Oscillators
,”
Appl. Math. Comput.
,
332
, pp.
250
262
.https://www.sciencedirect.com/science/article/abs/pii/S0026269218310036
13.
Li
,
H. L.
,
Cao
,
J. D.
,
Jiang
,
H. J.
, and
Alsaedi
,
A.
,
2018
, “
Graph Theory-Based Finite-Time Synchronization of Fractional-Order Complex Dynamical Networks
,”
J. Franklin Inst.
,
355
(
13
), pp.
5771
5789
.10.1016/j.jfranklin.2018.05.039
14.
Polyakov
,
A.
,
2012
, “
Nonlinear Feedback Design for Fixed-Time Stabilization of Linear Control Systems
,”
IEEE Trans. Autom. Control
,
57
(
8
), pp.
2106
2110
.10.1109/TAC.2011.2179869
15.
Arslan
,
E.
,
Narayanan
,
G.
,
Syed Ali
,
M.
,
Arik
,
S.
, and
Saroha
,
S.
,
2020
, “
Controller Design for Finite-Time and Fixed-Time Stabilization of Fractional-Order Memristive Complex-Valued BAM Neural Networks With Uncertain Parameters and Time-Varying Delays
,”
Neural Networks
,
130
, pp.
60
74
.10.1016/j.neunet.2020.06.021
16.
Shirkavand
,
M.
,
Pourgholi
,
M.
, and
Yazdizadeh
,
A.
,
2019
, “
Robust Fixed-Time Synchronisation of Non-Identical Nodes in Complex Networks Under Input Non-Linearities
,”
IET Control Theory Appl.
,
13
(
13
), pp.
2095
2103
.10.1049/iet-cta.2018.6287
17.
Zhou
,
L. L.
,
Tan
,
F.
,
Li
,
X. H.
, and
Zhou
,
L.
,
2021
, “
A Fixed-Time Synchronization-Based Secure Communication Scheme for Two-Layer Hybrid Coupled Networks
,”
Neurocomputing
,
433
, pp.
131
141
.10.1016/j.neucom.2020.12.033
18.
Alimi
,
A. M.
,
Aouiti
,
C.
, and
Assali
,
E.
,
2019
, “
Finite-Time and Fixed-Time Synchronization of a Class of Inertial Neural Networks With Multi-Proportional Delays and Its Application to Secure Communication
,”
Neurocomputing
,
332
, pp.
29
43
.10.1016/j.neucom.2018.11.020
19.
Sun
,
J.
,
Liu
,
J.
,
Wang
,
Y. D.
,
Yu
,
Y.
, and
Sun
,
C. Y.
,
2020
, “
Fixed-Time Event-Triggered Synchronization of a Multilayer Kuramoto-Oscillator Network
,”
Neurocomputing
,
379
, pp.
214
226
.10.1016/j.neucom.2019.10.040
20.
Li
,
Z. Y.
,
Xu
,
X.
,
Yan
,
T. R.
, and
Li
,
E.
,
2022
, “
Fixed-Time Synchronization in the Delayed Multiplex Networks by the Auxiliary-System Approach
,”
Int. J. Control, Autom., Syst.
,
20
(
7
), pp.
2169
2177
.10.1007/s12555-021-0272-0
21.
Kilbas
,
A.
,
Srivastava
,
H.
, and
Trujillo
,
J.
,
2006
,
Theory and Applications of Fractional Differential Equations
,
Elsevier
,
Amsterdam, The Netherlands
.
22.
Diethelm
,
K.
,
2010
,
The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type
,
Springer
,
Berlin
.
23.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.
24.
Zhang
,
S.
,
Yu
,
Y.
, and
Wang
,
H.
,
2015
, “
Mittag-Leffler Stability of Fractional-Order Hopfield Neural Networks, Nonlinear Anal
,”
Hybrid Syst.
,
16
, pp.
104
121
.https://www.sciencedirect.com/science/article/abs/pii/S1751570X1400048X
25.
Li
,
Y.
,
Chen
,
Y. Q.
, and
Podlubny
,
I.
,
2010
, “
Stability of Fractional-Order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag-Leffler Stability
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1810
1821
.10.1016/j.camwa.2009.08.019
26.
Hardy
,
G.
,
Littlewood
,
J.
, and
Polya
,
G.
,
1951
,
Inequalities
,
Cambridge University Press
,
London
.
You do not currently have access to this content.