Abstract

The goal of this paper is to design a robust controller that relies only on input–output data to enforce robust tracking, when considering a large class of uncertain nonlinear system. The discrete-time controller is based on an adaptation approach that relies on a fractional reaching law. The feedback gain is adapted through a fuzzy inference system that emulates a neural network, providing interesting capabilities to compensate a large sort of uncertainties and unmodeled effects. The uniform ultimate boundedness of the tracking error is analyzed in the Lyapunov framework. Finally, an experimental assessment is studied to highlight the reliability of the proposed scheme.

References

1.
Azar
,
A. T.
, and
Zhu
,
Q.
,
2015
,
Advances and Applications in Sliding Mode Control Systems
,
Springer
,
Cham, Switzerland
.
2.
Parra-Vega
,
V.
,
Arimoto
,
S.
,
Liu
,
Y.-H.
,
Hirzinger
,
G.
, and
Akella
,
P.
,
2003
, “
Dynamic Sliding Pid Control for Tracking of Robot Manipulators: Theory and Experiments
,”
IEEE Trans. Rob. Autom.
,
19
(
6
), pp.
967
976
.10.1109/TRA.2003.819600
3.
Zhao
,
D.
,
Gao
,
F.
,
Bouquain
,
D.
,
Dou
,
M.
, and
Miraoui
,
A.
,
2014
, “
Sliding-Mode Control of an Ultrahigh-Speed Centrifugal Compressor for the Air Management of Fuel-Cell Systems for Automotive Applications
,”
IEEE Trans. Veh. Technol.
,
63
(
1
), pp.
51
61
.10.1109/TVT.2013.2274046
4.
Afshari
,
M.
,
Mobayen
,
S.
,
Hajmohammadi
,
R.
, and
Baleanu
,
D.
,
2018
, “
Global Sliding Mode Control Via Linear Matrix Inequality Approach for Uncertain Chaotic Systems With Input Nonlinearities and Multiple Delays
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
3
), p. 031008.10.1115/1.4038641
5.
Huang
,
S.
, and
Wang
,
J.
,
2020
, “
Robust Fixed-Time Integral Sliding Mode Control of a Nonlinear Hydraulic Turbine Regulating System
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(
3
), p.
031002
.10.1115/1.4045718
6.
Drakunov
,
S. V.
, and
Utkin
,
V. I.
,
1992
, “
Sliding Mode Control in Dynamic Systems
,”
Int. J. Control
,
55
(
4
), pp.
1029
1037
.10.1080/00207179208934270
7.
Sánchez-Torres
,
J. D.
,
Loukianov
,
A. G.
,
Galicia
,
M. I.
, and
Domínguez
,
J. R.
,
2013
, “
Robust Nested Sliding Mode Integral Control for Anti-Lock Brake System
,”
Int. J. Veh. Des.
,
62
(
2/3/4
), pp.
188
205
.10.1504/IJVD.2013.052721
8.
Carvajal-Rubio
,
J.
,
Loukianov
,
A. G.
,
Sánchez-Torres
,
J. D.
, and
Defoort
,
M.
,
2019
, “
On the Discretization of a Class of Homogeneous Differentiators
,”
16th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)
,
IEEE
,
Mexico City, Mexico
,
Sept. 11–13
, pp.
1
6
.10.1109/ICEEE.2019.8884567
9.
Carvajal-Rubio
,
J. E.
,
Sánchez-Torres
,
J. D.
,
Defoort
,
M.
,
Loukianov
,
A. G.
, and
Djemai
,
M.
,
2020
, “
Discretization of the Robust Exact Filtering Differentiator Based on the Matching Approach
,”
17th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)
,
IEEE
,
Mexico City, Mexico
,
Nov. 11–13
, pp.
1
6
.10.1109/CCE50788.2020.9299184
10.
Du
,
H.
,
Yu
,
X.
,
Chen
,
M. Z.
, and
Li
,
S.
,
2016
, “
Chattering-Free Discrete-Time Sliding Mode Control
,”
Automatica
,
68
, pp.
87
91
.10.1016/j.automatica.2016.01.047
11.
Sharma
,
N. K.
,
Roy
,
S.
, and
Janardhanan
,
S.
,
2021
, “
New Design Methodology for Adaptive Switching Gain Based Discrete-Time Sliding Mode Control
,”
Int. J. Control
,
94
(
4
), pp.
1081
1088
.10.1080/00207179.2019.1632489
12.
Ozkop
,
E.
,
Altas
,
I. H.
,
Okumus
,
H. I.
, and
Sharaf
,
A. M.
,
2015
, “
A Fuzzy Logic Sliding Mode Controlled Electronic Differential for a Direct Wheel Drive EV
,”
Int. J. Electron.
,
102
(
11
), pp.
1919
1942
.10.1080/00207217.2015.1010183
13.
Duc
,
T. M.
,
Van Hoa
,
N.
, and
Dao
,
T.-P.
,
2018
, “
Adaptive Fuzzy Fractional-Order Nonsingular Terminal Sliding Mode Control for a Class of Second-Order Nonlinear Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
3
), p. 031004.10.1115/1.4038642
14.
Pérez-Ventura
,
U.
, and
Fridman
,
L.
,
2020
, “
Chattering Comparison Between Continuous and Discontinuous Sliding-Mode Controllers
,”
Variable-Structure Systems and Sliding-Mode Control
,
Springer
, Cham, Switzerland, pp.
197
211
.
15.
Moreno
,
J. A.
, and
Osorio
,
M.
,
2012
, “
Strict Lyapunov Functions for the Super-Twisting Algorithm
,”
IEEE Trans. Autom. Control
,
57
(
4
), pp.
1035
1040
.10.1109/TAC.2012.2186179
16.
Efe
,
M. Ö.
,
2011
, “
Integral Sliding Mode Control of a Quadrotor With Fractional Order Reaching Dynamics
,”
Trans. Inst. Meas. Control
,
33
(
8
), pp.
985
1003
.10.1177/0142331210377227
17.
Muñoz-Vázquez
,
A. J.
, and
Martínez-Reyes
,
F.
,
2019
, “
Output Feedback Fractional Integral Sliding Mode Control of Robotic Manipulators
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
5
), p. 054502.10.1115/1.4043000
18.
Podlubny
,
I.
,
1998
,
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
,
Elsevier
,
Amsterdam, The Netherlands
.
19.
Sun
,
G.
,
Wu
,
L.
,
Kuang
,
Z.
,
Ma
,
Z.
, and
Liu
,
J.
,
2018
, “
Practical Tracking Control of Linear Motor Via Fractional-Order Sliding Mode
,”
Automatica
,
94
, pp.
221
235
.10.1016/j.automatica.2018.02.011
20.
Kuang
,
Z.
,
Sun
,
G.
, and
Gao
,
H.
,
2019
, “
Simplified Newton-Based Cee and Discrete-Time Fractional-Order Sliding-Mode Cec
,”
IEEE/ASME Trans. Mechatron.
,
24
(
1
), pp.
175
185
.10.1109/TMECH.2018.2878347
21.
Dao
,
Q.-T.
,
Nguyen
,
M.-L.
, and
Yamamoto
,
S-I.
,
2019
, “
Discrete-Time Fractional Order Integral Sliding Mode Control of an Antagonistic Actuator Driven by Pneumatic Artificial Muscles
,”
Appl. Sci.
,
9
(
12
), p.
2503
.10.3390/app9122503
22.
Kuang
,
Z.
,
Shao
,
X.
,
Li
,
X.
, and
Sun
,
G.
,
2018
, “
High-Precision Analysis of Discrete-Time Fractional-Order Sliding Mode Control
,”
Chinese Control and Decision Conference (CCDC)
,
IEEE
,
Shenyang, China
,
May 22–24
, pp.
3083
3087
.10.1109/CCDC.2018.8407654
23.
Ma
,
H.
,
Liu
,
C.
,
Liu
,
Y.
, and
Xiong
,
Z.
,
2019
, “
Sliding Mode Control for Uncertain Discrete-Time Systems Based on Fractional Order Reaching Law
,”
IET Control Theory Appl.
,
13
(
13
), pp.
1963
1970
.10.1049/iet-cta.2018.5932
24.
Sharma
,
N. K.
,
Roy
,
S.
,
Janardhanan
,
S.
, and
Kar
,
I.
,
2019
, “
Adaptive Discrete-Time Higher Order Sliding Mode
,”
IEEE Trans. Circuits Syst. II: Express Briefs
,
66
(
4
), pp.
612
616
.10.1109/TCSII.2018.2849975
25.
Medhaffar
,
H.
,
Feki
,
M.
, and
Derbel
,
N.
,
2017
, “
Adaptive Discrete-Time Fuzzy Sliding Mode Control for a Class, of Chaotic Systems
,”
Adv. Sci., Technol. Eng. Syst. J.
,
2
(
3
), pp.
395
400
.10.25046/aj020351
26.
Miller
,
D. E.
,
2017
, “
Classical Discrete-Time Adaptive Control Revisited: Exponential Stabilization
,”
IEEE Conference on Control Technology and Applications (CCTA)
,
IEEE
,
Maui, HI
,
Aug. 27–30
, pp.
1975
1980
.10.1109/CCTA.2017.8062745
27.
Li
,
Y.
,
Sui
,
S.
, and
Tong
,
S.
,
2016
, “
Adaptive Fuzzy Control Design for Stochastic Nonlinear Switched Systems With Arbitrary Switchings and Unmodeled Dynamics
,”
IEEE Trans. Cybern.
,
47
(
2)
, pp.
1
12
.10.1109/TCYB.2016.2518300
28.
Roman
,
R.-C.
,
Precup
,
R.-E.
, and
Petriu
,
E. M.
,
2021
, “
Hybrid Data-Driven Fuzzy Active Disturbance Rejection Control for Tower Crane Systems
,”
Eur. J. Control
,
58
, pp.
373
387
.10.1016/j.ejcon.2020.08.001
29.
Muñoz-Vázquez
,
A. J.
,
Gaxiola
,
F.
,
Martínez-Reyes
,
F.
, and
Manzo-Martínez
,
A.
,
2019
, “
A Fuzzy Fractional-Order Control of Robotic Manipulators With Pid Error Manifolds
,”
Appl. Soft Comput.
,
83
, p.
105646
.10.1016/j.asoc.2019.105646
30.
Treesatayapun
,
C.
, and
Muñoz-Vázquez
,
A. J.
,
2020
, “
Discrete-Time Fractional-Order Control Based on Data-Driven Equivalent Model
,”
Appl. Soft Comput.
,
96
, p.
106633
.10.1016/j.asoc.2020.106633
31.
Treesatayapun
,
C.
, and
Uatrongjit
,
S.
,
2005
, “
Adaptive Controller With Fuzzy Rules Emulated Structure and Its Applications
,”
Eng. Appl. Artif. Intell.
,
18
(
5
), pp.
603
615
.10.1016/j.engappai.2004.12.006
32.
Muñoz-Vázquez
,
A.-J.
,
Parra-Vega
,
V.
, and
Sánchez-Orta
,
A.
,
2017
, “
A Novel Continuous Fractional Sliding Mode Control
,”
Int. J. Syst. Sci.
,
48
(
13
), pp.
2901
2908
.10.1080/00207721.2017.1348564
33.
Shabib
,
G.
,
2012
, “
Implementation of a Discrete Fuzzy Pid Excitation Controller for Power System Damping
,”
Ain Shams Eng. J.
,
3
(
2
), pp.
123
131
.10.1016/j.asej.2011.12.001
34.
Aydi
,
A.
,
Zaidi
,
I.
,
Djemel
,
M.
, and
Chtourou
,
M.
,
2009
, “
Robust Fuzzy Pid Controller for Discrete-Time Uncertain Nonlinear Systems
,”
Sixth International Multi-Conference on Systems, Signals and Devices
,
IEEE
,
Djerba, Tunisia
,
Mar. 23–26
, pp.
1
6
.10.1109/SSD.2009.4956709
35.
Jordan
,
C.
, and
Jordán
,
K.
,
1965
,
Calculus of Finite Differences
, Vol.,
33
,
American Mathematical Society
,
New York
.
36.
Drakunov
,
S. V.
, and
Utkin
,
V.
,
1990
, “
On Discrete-Time Sliding Modes
,”
Nonlinear Control Systems Design 1989
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
273
278
.
37.
Haninger
,
K.
, and
Hedrick
,
K.
,
2016
, “
Discrete-Time Implementations of Sliding Mode Control
,”
American Control Conference (ACC)
,
Boston, MA
,
July 6–8
, pp.
6519
6524
.10.1109/ACC.2016.7526696
38.
Salgado
,
I.
,
Kamal
,
S.
,
Bandyopadhyay
,
B.
,
Chairez
,
I.
, and
Fridman
,
L.
,
2016
, “
Control of Discrete Time Systems Based on Recurrent Super-Twisting-Like Algorithm
,”
ISA Trans.
,
64
, pp.
47
55
.10.1016/j.isatra.2016.04.024
39.
Koch
,
S.
, and
Reichhartinger
,
M.
,
2019
, “
Discrete-Time Equivalents of the Super-Twisting Algorithm
,”
Automatica
,
107
, pp.
190
199
.10.1016/j.automatica.2019.05.040
40.
Hanus
,
R.
,
1980
, “
A New Technique for Preventing Control Windup
,”
J. A
,
21
(
1
), pp.
15
20
.
You do not currently have access to this content.