Abstract
The goal of this paper is to design a robust controller that relies only on input–output data to enforce robust tracking, when considering a large class of uncertain nonlinear system. The discrete-time controller is based on an adaptation approach that relies on a fractional reaching law. The feedback gain is adapted through a fuzzy inference system that emulates a neural network, providing interesting capabilities to compensate a large sort of uncertainties and unmodeled effects. The uniform ultimate boundedness of the tracking error is analyzed in the Lyapunov framework. Finally, an experimental assessment is studied to highlight the reliability of the proposed scheme.
Issue Section:
Research Papers
References
1.
Azar
,
A. T.
, and
Zhu
,
Q.
, 2015
, Advances and Applications in Sliding Mode Control Systems
,
Springer
,
Cham, Switzerland
.2.
Parra-Vega
,
V.
,
Arimoto
,
S.
,
Liu
,
Y.-H.
,
Hirzinger
,
G.
, and
Akella
,
P.
, 2003
, “
Dynamic Sliding Pid Control for Tracking of Robot Manipulators: Theory and Experiments
,” IEEE Trans. Rob. Autom.
,
19
(6
), pp. 967
–976
.10.1109/TRA.2003.8196003.
Zhao
,
D.
,
Gao
,
F.
,
Bouquain
,
D.
,
Dou
,
M.
, and
Miraoui
,
A.
, 2014
, “
Sliding-Mode Control of an Ultrahigh-Speed Centrifugal Compressor for the Air Management of Fuel-Cell Systems for Automotive Applications
,” IEEE Trans. Veh. Technol.
,
63
(1
), pp. 51
–61
.10.1109/TVT.2013.22740464.
Afshari
,
M.
,
Mobayen
,
S.
,
Hajmohammadi
,
R.
, and
Baleanu
,
D.
, 2018
, “
Global Sliding Mode Control Via Linear Matrix Inequality Approach for Uncertain Chaotic Systems With Input Nonlinearities and Multiple Delays
,” ASME J. Comput. Nonlinear Dyn.
,
13
(3
), p. 031008.10.1115/1.40386415.
Huang
,
S.
, and
Wang
,
J.
, 2020
, “
Robust Fixed-Time Integral Sliding Mode Control of a Nonlinear Hydraulic Turbine Regulating System
,” ASME J. Comput. Nonlinear Dyn.
,
15
(3
), p. 031002
.10.1115/1.40457186.
Drakunov
,
S. V.
, and
Utkin
,
V. I.
, 1992
, “
Sliding Mode Control in Dynamic Systems
,” Int. J. Control
,
55
(4
), pp. 1029
–1037
.10.1080/002071792089342707.
Sánchez-Torres
,
J. D.
,
Loukianov
,
A. G.
,
Galicia
,
M. I.
, and
Domínguez
,
J. R.
, 2013
, “
Robust Nested Sliding Mode Integral Control for Anti-Lock Brake System
,” Int. J. Veh. Des.
,
62
(2/3/4
), pp. 188
–205
.10.1504/IJVD.2013.0527218.
Carvajal-Rubio
,
J.
,
Loukianov
,
A. G.
,
Sánchez-Torres
,
J. D.
, and
Defoort
,
M.
, 2019
, “
On the Discretization of a Class of Homogeneous Differentiators
,” 16th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)
,
IEEE
, Mexico City, Mexico
, Sept. 11–13
, pp. 1
–6
.10.1109/ICEEE.2019.88845679.
Carvajal-Rubio
,
J. E.
,
Sánchez-Torres
,
J. D.
,
Defoort
,
M.
,
Loukianov
,
A. G.
, and
Djemai
,
M.
, 2020
, “
Discretization of the Robust Exact Filtering Differentiator Based on the Matching Approach
,” 17th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)
,
IEEE
, Mexico City, Mexico
, Nov. 11–13
, pp. 1
–6
.10.1109/CCE50788.2020.929918410.
Du
,
H.
,
Yu
,
X.
,
Chen
,
M. Z.
, and
Li
,
S.
, 2016
, “
Chattering-Free Discrete-Time Sliding Mode Control
,” Automatica
,
68
, pp. 87
–91
.10.1016/j.automatica.2016.01.04711.
Sharma
,
N. K.
,
Roy
,
S.
, and
Janardhanan
,
S.
, 2021
, “
New Design Methodology for Adaptive Switching Gain Based Discrete-Time Sliding Mode Control
,” Int. J. Control
,
94
(4
), pp. 1081
–1088
.10.1080/00207179.2019.163248912.
Ozkop
,
E.
,
Altas
,
I. H.
,
Okumus
,
H. I.
, and
Sharaf
,
A. M.
, 2015
, “
A Fuzzy Logic Sliding Mode Controlled Electronic Differential for a Direct Wheel Drive EV
,” Int. J. Electron.
,
102
(11
), pp. 1919
–1942
.10.1080/00207217.2015.101018313.
Duc
,
T. M.
,
Van Hoa
,
N.
, and
Dao
,
T.-P.
, 2018
, “
Adaptive Fuzzy Fractional-Order Nonsingular Terminal Sliding Mode Control for a Class of Second-Order Nonlinear Systems
,” ASME J. Comput. Nonlinear Dyn.
,
13
(3
), p. 031004.10.1115/1.403864214.
Pérez-Ventura
,
U.
, and
Fridman
,
L.
, 2020
, “
Chattering Comparison Between Continuous and Discontinuous Sliding-Mode Controllers
,” Variable-Structure Systems and Sliding-Mode Control
,
Springer
, Cham, Switzerland, pp. 197
–211
.15.
Moreno
,
J. A.
, and
Osorio
,
M.
, 2012
, “
Strict Lyapunov Functions for the Super-Twisting Algorithm
,” IEEE Trans. Autom. Control
,
57
(4
), pp. 1035
–1040
.10.1109/TAC.2012.218617916.
Efe
,
M. Ö.
, 2011
, “
Integral Sliding Mode Control of a Quadrotor With Fractional Order Reaching Dynamics
,” Trans. Inst. Meas. Control
,
33
(8
), pp. 985
–1003
.10.1177/014233121037722717.
Muñoz-Vázquez
,
A. J.
, and
Martínez-Reyes
,
F.
, 2019
, “
Output Feedback Fractional Integral Sliding Mode Control of Robotic Manipulators
,” ASME J. Comput. Nonlinear Dyn.
,
14
(5
), p. 054502.10.1115/1.404300018.
Podlubny
,
I.
, 1998
, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
,
Elsevier
, Amsterdam, The Netherlands
.19.
Sun
,
G.
,
Wu
,
L.
,
Kuang
,
Z.
,
Ma
,
Z.
, and
Liu
,
J.
, 2018
, “
Practical Tracking Control of Linear Motor Via Fractional-Order Sliding Mode
,” Automatica
,
94
, pp. 221
–235
.10.1016/j.automatica.2018.02.01120.
Kuang
,
Z.
,
Sun
,
G.
, and
Gao
,
H.
, 2019
, “
Simplified Newton-Based Cee and Discrete-Time Fractional-Order Sliding-Mode Cec
,” IEEE/ASME Trans. Mechatron.
,
24
(1
), pp. 175
–185
.10.1109/TMECH.2018.287834721.
Dao
,
Q.-T.
,
Nguyen
,
M.-L.
, and
Yamamoto
,
S-I.
, 2019
, “
Discrete-Time Fractional Order Integral Sliding Mode Control of an Antagonistic Actuator Driven by Pneumatic Artificial Muscles
,” Appl. Sci.
,
9
(12
), p. 2503
.10.3390/app912250322.
Kuang
,
Z.
,
Shao
,
X.
,
Li
,
X.
, and
Sun
,
G.
, 2018
, “
High-Precision Analysis of Discrete-Time Fractional-Order Sliding Mode Control
,” Chinese Control and Decision Conference (CCDC)
,
IEEE
, Shenyang, China
, May 22–24
, pp. 3083
–3087
.10.1109/CCDC.2018.840765423.
Ma
,
H.
,
Liu
,
C.
,
Liu
,
Y.
, and
Xiong
,
Z.
, 2019
, “
Sliding Mode Control for Uncertain Discrete-Time Systems Based on Fractional Order Reaching Law
,” IET Control Theory Appl.
,
13
(13
), pp. 1963
–1970
.10.1049/iet-cta.2018.593224.
Sharma
,
N. K.
,
Roy
,
S.
,
Janardhanan
,
S.
, and
Kar
,
I.
, 2019
, “
Adaptive Discrete-Time Higher Order Sliding Mode
,” IEEE Trans. Circuits Syst. II: Express Briefs
,
66
(4
), pp. 612
–616
.10.1109/TCSII.2018.284997525.
Medhaffar
,
H.
,
Feki
,
M.
, and
Derbel
,
N.
, 2017
, “
Adaptive Discrete-Time Fuzzy Sliding Mode Control for a Class, of Chaotic Systems
,” Adv. Sci., Technol. Eng. Syst. J.
,
2
(3
), pp. 395
–400
.10.25046/aj02035126.
Miller
,
D. E.
, 2017
, “
Classical Discrete-Time Adaptive Control Revisited: Exponential Stabilization
,” IEEE Conference on Control Technology and Applications (CCTA)
, IEEE
, Maui, HI
, Aug. 27–30
, pp. 1975
–1980
.10.1109/CCTA.2017.806274527.
Li
,
Y.
,
Sui
,
S.
, and
Tong
,
S.
, 2016
, “
Adaptive Fuzzy Control Design for Stochastic Nonlinear Switched Systems With Arbitrary Switchings and Unmodeled Dynamics
,” IEEE Trans. Cybern.
,
47
(2)
, pp. 1
–12
.10.1109/TCYB.2016.251830028.
Roman
,
R.-C.
,
Precup
,
R.-E.
, and
Petriu
,
E. M.
, 2021
, “
Hybrid Data-Driven Fuzzy Active Disturbance Rejection Control for Tower Crane Systems
,” Eur. J. Control
,
58
, pp. 373
–387
.10.1016/j.ejcon.2020.08.00129.
Muñoz-Vázquez
,
A. J.
,
Gaxiola
,
F.
,
Martínez-Reyes
,
F.
, and
Manzo-Martínez
,
A.
, 2019
, “
A Fuzzy Fractional-Order Control of Robotic Manipulators With Pid Error Manifolds
,” Appl. Soft Comput.
,
83
, p. 105646
.10.1016/j.asoc.2019.10564630.
Treesatayapun
,
C.
, and
Muñoz-Vázquez
,
A. J.
, 2020
, “
Discrete-Time Fractional-Order Control Based on Data-Driven Equivalent Model
,” Appl. Soft Comput.
,
96
, p. 106633
.10.1016/j.asoc.2020.10663331.
Treesatayapun
,
C.
, and
Uatrongjit
,
S.
, 2005
, “
Adaptive Controller With Fuzzy Rules Emulated Structure and Its Applications
,” Eng. Appl. Artif. Intell.
,
18
(5
), pp. 603
–615
.10.1016/j.engappai.2004.12.00632.
Muñoz-Vázquez
,
A.-J.
,
Parra-Vega
,
V.
, and
Sánchez-Orta
,
A.
, 2017
, “
A Novel Continuous Fractional Sliding Mode Control
,” Int. J. Syst. Sci.
,
48
(13
), pp. 2901
–2908
.10.1080/00207721.2017.134856433.
Shabib
,
G.
, 2012
, “
Implementation of a Discrete Fuzzy Pid Excitation Controller for Power System Damping
,” Ain Shams Eng. J.
,
3
(2
), pp. 123
–131
.10.1016/j.asej.2011.12.00134.
Aydi
,
A.
,
Zaidi
,
I.
,
Djemel
,
M.
, and
Chtourou
,
M.
, 2009
, “
Robust Fuzzy Pid Controller for Discrete-Time Uncertain Nonlinear Systems
,” Sixth International Multi-Conference on Systems, Signals and Devices
,
IEEE
, Djerba, Tunisia
, Mar. 23–26
, pp. 1
–6
.10.1109/SSD.2009.495670935.
Jordan
,
C.
, and
Jordán
,
K.
, 1965
, Calculus of Finite Differences
, Vol.,
33
,
American Mathematical Society
, New York
.36.
Drakunov
,
S. V.
, and
Utkin
,
V.
, 1990
, “
On Discrete-Time Sliding Modes
,” Nonlinear Control Systems Design 1989
,
Elsevier
, Amsterdam, The Netherlands
, pp. 273
–278
.37.
Haninger
,
K.
, and
Hedrick
,
K.
, 2016
, “
Discrete-Time Implementations of Sliding Mode Control
,” American Control Conference (ACC)
, Boston, MA
, July 6–8
, pp. 6519
–6524
.10.1109/ACC.2016.752669638.
Salgado
,
I.
,
Kamal
,
S.
,
Bandyopadhyay
,
B.
,
Chairez
,
I.
, and
Fridman
,
L.
, 2016
, “
Control of Discrete Time Systems Based on Recurrent Super-Twisting-Like Algorithm
,” ISA Trans.
,
64
, pp. 47
–55
.10.1016/j.isatra.2016.04.02439.
Koch
,
S.
, and
Reichhartinger
,
M.
, 2019
, “
Discrete-Time Equivalents of the Super-Twisting Algorithm
,” Automatica
,
107
, pp. 190
–199
.10.1016/j.automatica.2019.05.04040.
Hanus
,
R.
, 1980
, “
A New Technique for Preventing Control Windup
,” J. A
,
21
(1
), pp. 15
–20
.Copyright © 2023 by ASME
You do not currently have access to this content.