Abstract

The main focus of this paper is centered around approximate controllability results of Atangana–Baleanu fractional differential systems with infinite delay. Using principles and ideas from the theory of multivalued maps, fractional calculus, and Bohnenblust–Karlin fixed point techniques, the key findings are established. We begin by emphasizing the existence of mild solutions, and then demonstrate the approximate controllability of the Atangana–Baleanu fractional control system. We then apply our findings to the theory of the neutral system.

References

1.
Francesco
,
M.
,
2010
,
Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models
,
World Scientific
, Singapore.
2.
Mainardi
,
F.
,
1996
, “
Fractional Relaxation-Oscillation and Fractional Diffusion-Wave Phenomena
,”
Chaos Solitons Fract.
,
7
(
9
), pp.
1461
1477
.10.1016/0960-0779(95)00125-5
3.
Richard
,
H.
,
2014
,
Fractional Calculus: An Introduction for Physicists
,
World Scientific
, Singapore.
4.
Ganji
,
R. M.
,
Jafari
,
H.
, and
Baleanu
,
D.
,
2020
, “
A New Approach for Solving Multivariable Orders Differential Equations With Mittag-Leffler Kernel
,”
Chaos Solitons Fract.
,
130
, p.
109405
.10.1016/j.chaos.2019.109405
5.
Atangana
,
A.
, and
Baleanu
,
D.
,
2016
, “
New Fractional Derivatives With Nonlocal and Non-Singular Kernel: Theory and Application to Heat Transfer Model
,”
Appl. Heat Transfer Model
,
20
(
2
), pp.
763
769
.10.2298/TSCI160111018A
6.
Atangana
,
A.
, and
Alqahtani
,
R. T.
,
2018
, “
New Numerical Method and Application to Keller-Segel Model With Fractional Order Derivative
,”
Chaos Solitons Fract.
,
116
, pp.
14
21
.10.1016/j.chaos.2018.09.013
7.
Wang
,
J. R.
, and
Zhang
,
Y. R.
,
2015
, “
Nonlocal Initial Value Problems for Differential Equation With Hilfer Fractional Derivative
,”
Appl. Math. Comput.
,
266
, pp.
850
859
.10.1016/j.amc.2015.05.144
8.
Yang
,
M.
, and
Wang
,
Q.
,
2017
, “
Approximate Controllability of Hilfer Fractional Differential Inclusions With Nonlocal Conditions
,”
Math. Methods Appl. Sci.
,
40
(
4
), pp.
1126
1138
.10.1002/mma.4040
9.
Jafari
,
H.
,
Tuan
,
N. A.
, and
Ganji
,
R. M.
,
2021
, “
A New Numerical Scheme for Solving Pantograph Type Nonlinear Fractional Integro-Differential Equations
,”
J. King Saud Univ. Sci.
,
33
(
1
), p.
101185
.10.1016/j.jksus.2020.08.029
10.
Jafari
,
H.
,
Ganji
,
R. M.
,
Sayevand
,
K.
, and
Baleanu
,
D.
,
2022
, “
A Numerical Approach for Solving Fractional Optimal Control Problems With Mittag-Leffler Kernel
,”
ASME J. Vib. Control
,
28
(
19–20
), pp.
2596
2606
.10.1177/10775463211016967
11.
Sadeghi
,
S.
,
Jafari
,
H.
, and
Nemati
,
S.
,
2020
, “
Operational Matrix for Atangana-Baleanu Derivative Based on Genocchi Polynomials for Solving FDEs
,”
Chaos Solitons Fract.
,
135
, p.
109736
.10.1016/j.chaos.2020.109736
12.
Dineshkumar
,
C.
,
Udhayakumar
,
R.
,
Vijayakumar
,
V.
,
Nisar
,
K. S.
, and
Shukla
,
A.
,
2022
, “
A Note Concerning to Approximate Controllability of Atangana-Baleanu Fractional Neutral Stochastic Systems With Infinite Delay
,”
Chaos Solitons Fract.
,
157
, p.
111916
.10.1016/j.chaos.2022.111916
13.
Dineshkumar
,
C.
,
Udhayakumar
,
R.
,
Vijayakumar
,
V.
,
Nisar
,
K. S.
,
Shukla
,
A.
,
Abdel-Aty
,
A. H.
,
Mahmoud
,
M.
, and
Mahmoud
,
E.
,
2022
, “
A Note on Existence and Approximate Controllability Outcomes of Atangana-Baleanu Neutral Fractional Stochastic Hemivariational Inequality
,”
Results Phys.
,
38
, p.
105647
.10.1016/j.rinp.2022.105647
14.
Ma
,
Y. K.
,
Vijayakumar
,
V.
,
Shukla
,
A.
,
Nisar
,
K. S.
,
Thilagavathi
,
K.
,
Nashine
,
H. K.
,
Singh
,
A. K.
, and
Zakarya
,
M.
,
2023
, “
Discussion on the Existence of Mild Solution for Fractional Derivative by Mittag-Leffler Kernel to Fractional Stochastic Neutral Differential Inclusions
,”
Alexandria Eng. J.
,
63
, pp.
271
282
.10.1016/j.aej.2022.08.006
15.
Aimene
,
D.
,
Baleanu
,
D.
, and
Seba
,
D.
,
2019
, “
Controllability of Semilinear Impulsive Atangana-Baleanu Fractional Differential Equations With Delay
,”
Chaos Solitons Fract.
,
128
, pp.
51
57
.10.1016/j.chaos.2019.07.027
16.
Jarad
,
F.
,
Abdeljawad
,
T.
, and
Hammouch
,
Z.
,
2018
, “
On a Class of Ordinary Differential Equations in the Frame of Atangana-Baleanu Fractional Derivative
,”
Chaos Solitons Fract.
,
117
, pp.
16
20
.10.1016/j.chaos.2018.10.006
17.
Kumar
,
A.
, and
Pandey
,
D. N.
,
2020
, “
Existence of Mild Solution of Atangana-Baleanu Fractional Differential Equations With Non-Instantaneous Impulses and With Non-Local Conditions
,”
Chaos Solitons Fract.
,
132
, p.
109551
.10.1016/j.chaos.2019.109551
18.
Ravichandran
,
C.
,
Logeswari
,
K.
, and
Jarad
,
F.
,
2019
, “
New Results on Existence in the Frame-Work of Atangana-Baleanu Derivative for FractionalIntegro-Differential Equations
,”
Chaos Solitons Fract.
,
125
, pp.
194
200
.10.1016/j.chaos.2019.05.014
19.
Williams
,
W. K.
,
Vijayakumar
,
V.
,
Shukla
,
A.
, and
Nisar
,
K. S.
,
2022
, “
An Analysis on Approximate Controllability of Atangana-Baleanu Fractional Semilinear Control Systems
,”
Int. J. Nonlinear Sci. Numer. Simul.
, pp.
1
12
.10.1515/ijnsns-2021-0371
20.
Podlubny
,
I.
,
1999
, “
An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
,”
Math. Sci. Eng.
,
198
, p.
366
.
21.
Pazy
,
A.
,
1983
,
Semigroups of Linear Operators and Applications to Partial Differential Equations
, Applied Mathematical Sciences,
Springer
,
New York
, Vol.
44
.
22.
Mahmudov
,
N. I.
, and
Denker
,
A.
,
2000
, “
On Controllability of Linear Stochastic Systems
,”
Int. J. Control
,
73
(
2
), pp.
144
151
.10.1080/002071700219849
23.
Cakan
,
U.
, and
Ozdemir
,
I.
,
2014
, “
An Application of Krasnoselskii Fixed Point Theorem to Some Nonlinear Functional Integral Equations
,”
Nevsehir Bilim Teknoloji Derg.
,
3
(
2
), pp.
66
73
.
24.
Wang
,
J.
, and
Zhou
,
Y.
,
2011
, “
Existence and Controllability Results for Fractional Semilinear Differential Inclusions
,”
Nonlinear Anal.
,
12
(
6
), pp.
3642
3653
.10.1016/j.nonrwa.2011.06.021
25.
Shu
,
X.-B.
,
Lai
,
Y.
, and
Chen
,
Y.
,
2011
, “
The Existence of Mild Solutions for Impulsive Fractional Partial Differential Equations
,”
Nonlinear Anal.
,
74
(
5
), pp.
2003
2011
.10.1016/j.na.2010.11.007
You do not currently have access to this content.