Abstract

This study expands and modifies the homotopy analysis method to handle differential equations with generalized Caputo-type fractional derivatives. Analytical approximate solutions for such models were successfully provided using the proposed modification. The determination of the valid region of convergence for the proposed method, with respect to the auxiliary control parameter, was discussed when using fractional operators. Then, mainly, the accuracy and effectiveness of the proposed method was verified through illustrative examples and comparisons with the predictor corrector method and RK4 method. Finally, it is expected that the studied generalized operators and the suggested method can be widely applied in the field of fractional calculus.

References

1.
Oldham
,
K. B.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus
,
Academic Press
,
New York
.
2.
Bagley
,
R. L.
, and
Torvik
,
P. L.
,
1986
, “
On the Fractional Calculus Model of Viscoelastic Behavior
,”
J. Rheol.
,
30
(
1
), pp.
133
155
.10.1122/1.549887
3.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
,
1993
,
Fractional Integrals and Derivatives: Theory and Applications
,
Gordon and Breach
,
Amsterdam
.
4.
Mainardi
,
F.
,
1996
, “
Fractional Relaxation-Oscillation and Fractional Diffusion-Wave Phenomena
,”
Chaos Soliton Fract.
,
7
(
9
), pp.
1461
1477
.10.1016/0960-0779(95)00125-5
5.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
New York
.
6.
Hilfer
,
R.
,
2000
,
Applications of Fractional Calculus in Physics
,
World Scientific
,
Singapore
.
7.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
,
Theory and Applications of Fractional Differential Equations
,
Elsevier
,
Amsterdam, The Netherlands
.
8.
Stojanović
,
M.
,
2011
, “
Numerical Method for Solving Diffusion-Wave Phenomena
,”
Comput. Appl. Math.
,
235
(
10
), pp.
3121
3137
.10.1016/j.cam.2010.12.010
9.
Herrmann
,
R.
,
2014
,
Fractional Calculus: An Introduction for Physicists
,
World Scientific
,
Singapore
.
10.
West
,
B. J.
,
2015
,
Fractional Calculus View of Complexity: Tomorrow's Science
,
Taylor and Francis
,
UK
.
11.
Sun
,
H. G.
,
Zhang
,
Y.
,
Baleanu
,
D.
,
Chen
,
W.
, and
Chen
,
Y. Q.
,
2018
, “
A New Collection of Real World Applications of Fractional Calculus in Science and Engineering
,”
Commun. Nonlinear Sci. Numer. Simul.
,
64
, pp.
213
231
.10.1016/j.cnsns.2018.04.019
12.
Odibat
,
Z.
, and
Baleanu
,
D.
,
2019
, “
A Linearization-Based Approach of Homotopy Analysis Method for Non-Linear Time-Fractional Parabolic PDEs
,”
Math. Methods Appl. Sci.
,
42
(
18
), pp.
7222
7232
.10.1002/mma.5829
13.
Odibat
,
Z.
, and
Kumar
,
S.
,
2019
, “
A Robust Computational Algorithm of Homotopy Asymptotic Method for Solving Systems of Fractional Differential Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
8
), p.
81004
.10.1115/1.4043617
14.
Al-Qudah
,
A.
,
Odibat
,
Z.
, and
Shawagfeh
,
N.
,
2022
, “
A Linearization-Based Computational Algorithm of Homotopy Analysis Method for Nonlinear Reaction-Diffusion Systems
,”
Math. Comput. Simulat.
,
194
, pp.
505
522
.10.1016/j.matcom.2021.11.027
15.
Al-Qudah
,
A.
,
Odibat
,
Z.
, and
Shawagfeh
,
N.
,
2022
, “
An Optimal Homotopy Analysis Transform Method for Handling Nonlinear PDEs
,”
Int. J. Appl. Comput. Math.
,
8
(
5
), p.
260
.10.1007/s40819-022-01401-6
16.
Yadav
,
S.
,
Kumar
,
D.
, and
Nisar
,
K. S.
,
2021
, “
A Reliable Numerical Method for Solving Fractional Reaction-Diffusion Equations
,”
J. King Saud Univ. Sci.
,
33
(
2
), p.
101320
.10.1016/j.jksus.2020.101320
17.
Shawagfeh
,
N.
,
2002
, “
Analytical Approximate Solutions for Nonlinear Fractional Differential Equations
,”
Appl. Math. Comput.
,
131
(
2–3
), pp.
517
529
.10.1016/S0096-3003(01)00167-9
18.
Duan
,
J. S.
,
Chaolu
,
T.
,
Rach
,
R.
, and
Lu
,
L.
,
2013
, “
The Adomian Decomposition Method With Convergence Acceleration Techniques for Nonlinear Fractional Differential Equations
,”
Comput. Math. Appl.
,
66
(
5
), pp.
728
736
.10.1016/j.camwa.2013.01.019
19.
Laoubi
,
M.
,
Odibat
,
Z.
, and
Maayah
,
B.
,
2022
, “
A Legendre-Based Approach of the Optimized Decomposition Method for Solving Nonlinear Caputo-Type Fractional Differential Equations
,”
Math. Methods Appl. Sci.
,
45
(
12
), pp.
7307
7321
.10.1002/mma.8237
20.
Odibat
,
Z.
, and
Momani
,
S.
,
2006
, “
Application of Variational Iteration Method to Nonlinear Differential Equations of Fractional Order
,”
Int. J. Nonlinear Sci. Numer. Simul.
,
7
(
1
), pp.
27
34
.
21.
Odibat
,
Z.
, and
Momani
,
S.
,
2009
, “
The Variational Iteration Method: An Effcient Scheme for Handling Fractional Partial Differential Equations in Fluid Mechanics
,”
Comput. Math. Appl.
,
58
(
11–12
), pp.
2199
2208
.10.1016/j.camwa.2009.03.009
22.
Anwar
,
A. M. O.
,
Jarad
,
F.
,
Baleanu
,
D.
, and
Ayaz
,
F.
,
2013
, “
Fractional Caputo Heat Equation Within the Double Laplace Transform
,”
Rom. J. Phys.
,
58
(
1
), pp.
15
22
.
23.
Jarad
,
F.
, and
Abdeljawad
,
T.
,
2020
, “
Generalized Fractional Derivatives and Laplace Transform
,”
Discrete Contin. Dyn. Syst. - S
,
13
(
3
), pp.
709
722
.10.3934/dcdss.2020039
24.
Prakash
,
P.
,
Kumar
,
M.
, and
Baleanu
,
D.
,
2018
, “
A New Iterative Technique for a Fractional Model of Nonlinear Zakharov-Kuznetsov Equations Via Sumudu Transform
,”
Appl. Math. Comput.
,
334
, pp.
30
40
.
25.
Singh
,
J.
,
2020
, “
Analysis of Fractional Blood Alcohol Model With Composite Fractional Derivative
,”
Chaos Solitons Fractals
,
140
, p.
110127
.10.1016/j.chaos.2020.110127
26.
Singh
,
J.
,
Gupta
,
A.
, and
Baleanu
,
D.
,
2022
, “
On the Analysis of an Analytical Approach for Fractional Caudrey-Dodd-Gibbon Equations
,”
Alex. Eng. J.
,
61
(
7
), pp.
5073
5082
.10.1016/j.aej.2021.09.053
27.
Odibat
,
Z.
,
Momani
,
S.
, and
Erturk
,
V. S.
,
2008
, “
Generalized Differential Transform Method: Application to Differential Equations of Fractional Order
,”
Appl. Math. Comput.
,
197
(
2
), pp.
467
477
.
28.
Odibat
,
Z.
,
Kumar
,
S.
,
Shawagfeh
,
N.
,
Alsaedi
,
A.
, and
Hayat
,
T.
,
2017
, “
A Study on the Convergence Conditions of Generalized Differential Transform Method
,”
Math. Methods Appl. Sci.
,
40
(
1
), pp.
40
48
.10.1002/mma.3961
29.
Diethelm
,
K.
,
Ford
,
N.
, and
Freed
,
A.
,
2002
, “
A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
,”
Nonlin. Dyn.
,
29
(
1/4
), pp.
3
22
.10.1023/A:1016592219341
30.
Cen
,
Z.
,
Le
,
A.
, and
Xu
,
A.
,
2017
, “
A Robust Numerical Method for a Fractional Differential Equation
,”
Appl. Math. Comput.
,
315
, pp.
445
452
.10.1016/j.amc.2017.08.011
31.
Dabiri
,
A.
, and
Butcher
,
E. A.
,
2018
, “
Numerical Solution of Multi-Order Fractional Differential Equations With Multiple Delays Via Spectral Collocation Methods
,”
Appl. Math. Modell.
,
56
, pp.
424
448
.10.1016/j.apm.2017.12.012
32.
Odibat
,
Z.
, and
Baleanu
,
D.
,
2020
, “
Numerical Simulation of Initial Value Problems With Generalized Caputo-Type Fractional Derivatives
,”
Appl. Numer. Math.
,
156
, pp.
94
105
.10.1016/j.apnum.2020.04.015
33.
Odibat
,
Z.
,
2021
, “
A Universal Predictor-Corrector Algorithm for Numerical Simulation of Generalized Fractional Differential Equations
,”
Nonlinear Dyn.
,
105
(
3
), pp.
2363
2374
.10.1007/s11071-021-06670-2
34.
Singh
,
J.
,
Ganbari
,
B.
,
Kumar
,
D.
, and
Baleanu
,
D.
,
2021
, “
Analysis of Fractional Model of Guava for Biological Pest Control With Memory Effect
,”
J. Adv. Res.
,
32
, pp.
99
108
.10.1016/j.jare.2020.12.004
35.
Zheng
,
X.
,
2022
, “
Numerical Approximation for a Nonlinear Variable-Order Fractional Differential Equation Via a Collocation Method
,”
Math. Comput. Simul.
,
195
, pp.
107
118
.10.1016/j.matcom.2022.01.005
36.
Heydari
,
M. H.
,
Razzaghi
,
M.
, and
Baleanu
,
D.
,
2023
, “
A Numerical Method Based on the Piecewise Jacobi Functions for Distributed-Order Fractional Schrödinger Equation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
116
, p.
106873
.10.1016/j.cnsns.2022.106873
37.
Liao
,
S.
,
2003
,
Beyond Perturbation: Introduction to the Homotopy Analysis Method
,
Chapman and Hall/CRC Press
,
Florida
.
38.
Liao
,
S.
,
2011
,
Homotopy Analysis Method in Nonlinear Differential Equations
,
Springer-Verlag
,
Berlin
.
39.
Sun
,
Q.
,
2005
, “
Solving the klein-gordon Equation by Means of the Homotopy Analysis Method
,”
Appl. Math. Comput.
,
169
(
1
), pp.
355
365
.10.1016/j.amc.2004.09.056
40.
Wu
,
W.
, and
Liao
,
S.
,
2005
, “
Solving Solitary Waves With discontinuity by Means of the Homotopy Analysis Method
,”
Chaos Soliton Fractals
,
26
(
1
), pp.
177
185
.10.1016/j.chaos.2004.12.016
41.
Abbasbandy
,
S.
,
2007
, “
The Application of Homotopy Analysis Method to Solve a Generalized Hirota-Satsuma Coupled KdV Equation
,”
Phys. Lett. A
,
361
(
6
), pp.
478
483
.10.1016/j.physleta.2006.09.105
42.
Abbasbandy
,
S.
,
2007
, “
Homotopy Analysis Method for Heat Radiation Equations
,”
Int. Commun. Heat Mass Transfer
,
34
(
3
), pp.
380
387
.10.1016/j.icheatmasstransfer.2006.12.001
43.
Abbasbandy
,
S.
,
2008
, “
Approximate Solution for the Nonlinear model of diffusion and Reaction in Porous Catalysts by Means of the Homotopy Analysis Method
,”
Chem. Eng. J.
,
136
(
2–3
), pp.
144
150
.10.1016/j.cej.2007.03.022
44.
Song
,
L.
, and
Zhang
,
H.
,
2007
, “
Application of Homotopy Analysis Method to Fractional KdV-Burgers-Kuramoto Equation
,”
Phys. Lett. A
,
367
(
1–2
), pp.
88
94
.10.1016/j.physleta.2007.02.083
45.
Odibat
,
Z.
,
Momani
,
S.
, and
Xu
,
H.
,
2010
, “
A Reliable Algorithm of Homotopy Analysis Method for Solving Nonlinear Fractional Differential Equations
,”
Appl. Math. Modell.
,
34
(
3
), pp.
593
600
.10.1016/j.apm.2009.06.025
46.
Ganjiani
,
M.
,
2010
, “
Solution of Nonlinear Fractional Differential Equations Using Homotopy Analysis Method
,”
Appl. Math. Model.
,
34
(
6
), pp.
1634
1641
.10.1016/j.apm.2009.09.011
47.
Ghazanfari
,
B.
, and
Veisi
,
F.
,
2011
, “
Homotopy Analysis Method for the Fractional Nonlinear Equations
,”
J. King Saud Univ. Sci.
,
23
(
4
), pp.
389
393
.10.1016/j.jksus.2010.07.019
48.
Hashim
,
I.
,
Abdulaziz
,
O.
, and
Momani
,
S.
,
2009
, “
Homotopy Analysis Method for Fractional IVPs
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
3
), pp.
674
684
.10.1016/j.cnsns.2007.09.014
49.
Miller
,
K. S.
, and
Ross
,
B.
,
1993
,
An Introduction to the Fractional Calculus and Fractional Differential Equations
,
Wiley
,
New York
.
50.
Caputo
,
M.
,
1967
, “
Linear Models of Dissipation Whose Q is Almost Frequency independent-II
,”
Geophys. J. Int.
,
13
(
5
), pp.
529
539
.10.1111/j.1365-246X.1967.tb02303.x
51.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2017
,
The Fractional Trigonometry: With Applications to Fractional Differential Equations and Science
,
Wiley
,
New York
.
52.
Osler
,
T. J.
,
1970
, “
The Fractional Derivative of a Composite Function
,”
SIAM J. Math. Anal.
,
1
(
2
), pp.
288
293
.10.1137/0501026
53.
Fafa
,
W.
,
Odibat
,
Z.
, and
Shawagfeh
,
N.
,
2022
, “
Analytical Approximate Solutions for Differential Equations With Generalized Caputo-Type Fractional Derivatives
,”
Int. J. Appl. Comput. Math.
,
8
(
5
), p.
231
.10.1007/s40819-022-01448-5
54.
Almeida
,
R.
,
2017
, “
A Caputo Fractional Derivative of a Function With Respect to Another Function
,”
Commun. Nonlinear Sci. Numer. Simul.
,
44
, pp.
460
481
.10.1016/j.cnsns.2016.09.006
55.
Odibat
,
Z.
,
2019
, “
On the Optimal Selection of the Linear Operator and the Initial Approximation in the Application of the Homotopy Analysis Method to Nonlinear Fractional Differential Equations
,”
Appl. Numer. Math.
,
137
, pp.
203
212
.10.1016/j.apnum.2018.11.003
You do not currently have access to this content.