Abstract

This work investigates the kinematics and ligament, muscle, and contact forces of drop-landing exercise. A two-dimensional sagittal inverse dynamics knee model is developed to predict internal forces experienced during this exercise. Experimental data is gathered using a vicon motion analysis system and AMTI force plates. This experimental data is then used as input to the inverse dynamics model. The forces produced during the drop-landing exercise are computed using an optimization approach. The tibiofemoral contact point was predicted to move anteriorly as the most significant muscle, ligament, and contact forces increased reaching their peaks. Next, the contact point moves posteriorly as the most significant internal forces decrease, and then moves again anteriorly until the end of the exercise (end of the ascent phase) as the internal forces decrease to zero. Posterior cruciate ligament (PCL) is predicted to be the only significant ligament during drop-landing. The largest force values experienced during drop-landing are gluteus muscle and tibiofemoral contact forces with a peak of 17 body weight (BW), quadriceps muscle force with a peak of 14 BW, and hip contact force along femoral longitudinal direction with a peak of 7 BW. A comparison with data available in the literature is conducted.

References

1.
Dufek
,
J. S.
, and
Bates
,
B. T.
,
1991
, “
Biomechanical Factors Associated With Injury During Landing in Jump Sports
,”
Sports Med.
,
12
(
5
), pp.
326
337
.10.2165/00007256-199112050-00005
2.
Bates
,
N. A.
,
Ford
,
K. R.
,
Myer
,
G. D.
, and
Hewett
,
T. E.
,
2013
, “
Impact Differences in Ground Reaction Force and Center of Mass Between the First and Second Landing Phases of a Drop Vertical Jump and Their Implications for Injury Risk Assessment
,”
J. Biomech.
,
46
(
7
), pp.
1237
1241
.10.1016/j.jbiomech.2013.02.024
3.
Norcross
,
M. F.
,
Lewek
,
M. D.
,
Padua
,
D. A.
,
Shultz
,
S. J.
,
Weinhold
,
P. S.
, and
Blackburn
,
J. T.
,
2013
, “
Lower Extremity Energy Absorption and Biomechanics During Landing, Part I: Sagittal-Plane Energy Absorption Analyses
,”
J. Athl. Train.
,
48
(
6
), pp.
748
756
.10.4085/1062-6050-48.4.09
4.
Pflum
,
M. A.
,
Shelburne
,
K. B.
,
Torry
,
M. R.
,
Decker
,
M. J.
, and
Pandy
,
M. G.
,
2004
, “
Model Prediction of Anterior Cruciate Ligament Force During Drop-Landings
,”
Med. Sci. Sports Exerc.
,
36
(
11
), pp.
1949
1958
.10.1249/01.MSS.0000145467.79916.46
5.
Taylor
,
K. A.
,
Terry
,
M. E.
,
Utturkar
,
G. M.
,
Spritzer
,
C. E.
,
Queen
,
R. M.
,
Irribarra
,
L. A.
,
Garrett
,
W. E.
, and
DeFrate
,
L. E.
,
2011
, “
Measurement of In Vivo Anterior Cruciate Ligament Strain During Dynamic Jump Landing
,”
J. Biomech.
,
44
(
3
), pp.
365
371
.10.1016/j.jbiomech.2010.10.028
6.
Pappas
,
E.
,
Hagins
,
M.
,
Sheikhzadeh
,
A.
,
Nordin
,
M.
, and
Rose
,
D.
,
2007
, “
Biomechanical Differences Between Unilateral and Bilateral Landings From a Jump: Gender Differences
,”
Clin. J. Sport Med.
,
17
(
4
), pp.
263
268
.10.1097/JSM.0b013e31811f415b
7.
Laughlin
,
W. A.
,
Weinhandl
,
J. T.
,
Kernozek
,
T. W.
,
Cobb
,
S. C.
,
Keenan
,
K. G.
, and
O'Connor
,
K. M.
,
2011
, “
The Effects of Single-Leg Landing Technique on ACL Loading
,”
J. Biomech.
,
44
(
10
), pp.
1845
1851
.10.1016/j.jbiomech.2011.04.010
8.
Earl
,
J. E.
,
Monteiro
,
S. K.
, and
Snyde
,
K. R.
,
2007
, “
Differences in Lower Extremity Kinematics Between a Bilateral Drop-Vertical Jump and a Single-Leg Step-Down
,”
J. Orthop. Sports Phys. Ther.
,
37
(
5
), pp.
245
252
.10.2519/jospt.2007.2202
9.
Afifi
,
M.
, and
Hinrichs
,
R. N.
,
2012
, “
A Mechanics Comparison Between Landing From a Countermovement Jump and Landing From Stepping Off a Box
,”
J. Appl. Biomech.
,
28
(
1
), pp.
1
9
.10.1123/jab.28.1.1
10.
Prilutsky
,
B. I.
, and
Zatsiorsky
,
V. M.
,
1994
, “
Tendon Action of Two-Joint Muscles: Transfer of Mechanical Energy Between Joints During Jumping, Landing, and Running
,”
J. Biomech.
,
27
(
1
), pp.
25
34
.10.1016/0021-9290(94)90029-9
11.
Schellenberg
,
F.
,
Oberhofer
,
K.
,
Taylor
,
W. R.
,
Lorenzetti
,
S.
, and
Sun
,
Z.
,
2015
, “
Review of Modelling Techniques for In Vivo Muscle Force Estimation in the Lower Extremities During Strength Training
,”
Comput. Math. Methods Med.
,
2015
(
1
), pp.
1
12
.10.1155/2015/483921
12.
Spägele
,
T.
,
Kistner
,
A.
, and
Gollhofer
,
A.
,
1999
, “
A Multi-Phase Optimal Control Technique for the Simulation of a Human Vertical Jump
,”
J. Biomech.
,
32
(
1
), pp.
87
91
.10.1016/S0021-9290(98)00135-3
13.
Caruntu
,
D. I.
, and
Moreno
,
R.
,
2019
, “
Human Knee Inverse Dynamics Model of Vertical Jump Exercise
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
10
), p.
101005
.10.1115/1.4044246
14.
Caruntu
,
D. I.
, and
Hefzy
,
M. S.
,
2004
, “
3-D Anatomically Based Dynamic Modeling of the Human Knee to Include Tibio-Femoral and Patello-Femoral Joints
,”
ASME J. Biomech. Eng.
,
126
(
1
), pp.
44
53
.10.1115/1.1644565
15.
DeFrate
,
L. E.
,
Nha
,
K. W.
,
Papannagari
,
R.
,
Moses
,
J. M.
,
Gill
,
T. J.
, and
Li
,
G.
,
2007
, “
The Biomechanical Function of the Patellar Tendon During in-Vivo Weight-Bearing Flexion
,”
J. Biomech.
,
40
(
8
), pp.
1716
1722
.10.1016/j.jbiomech.2006.08.009
16.
Yue
,
B.
,
Varadarajan
,
K. M.
,
Ai
,
S.
,
Tang
,
T.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2011
, “
Differences of Knee Anthropometry Between Chinese and White Men and Women
,”
J. Arthroplasty
,
26
(
1
), pp.
124
130
.10.1016/j.arth.2009.11.020
17.
Caruntu
,
D. I.
,
Hefzy
,
M. S.
,
Goel
,
V. K.
,
Goitz
,
H. T.
,
Dennis
,
M. J.
, and
Agrawal
,
V.
,
2003
, “
Modeling the Knee Joint in Deep Flexion: Thigh and Calf Contact
,”
Proceedings of 2003 Summer Bioengineering Conference
, Key Biscayne, Florida, June 25–29, pp.
459
460
.https://faculty.utrgv.edu/dumitru.caruntu/Journal%20Papers/Biomechanics/Deep_Knee.pdf
18.
Granados
,
E.
,
2015
, “
Two-Dimensional Dynamics Model of the Lower Limb to Include Viscoelastic Knee Ligaments
,” MS thesis,
The University of Texas Pan-American
, Edinburg, TX.
19.
Hill
,
P. F.
,
Vedi
,
V.
,
Williams
,
A.
,
Iwaki
,
H.
,
Pinskerova
,
V.
, and
Freeman
,
M. A.
,
2000
, “
Tibiofemoral Movement 2: The Loaded and Unloaded Living Knee Studied by MRI
,”
J. Bone Jt. Surg.
,
82-B
(
8
), pp.
1196
1198
.10.1302/0301-620X.82B8.0821196
20.
Shelburne
,
K. B.
, and
Pandy
,
M. G.
,
1998
, “
Determinants of Cruciate-Ligament Loading During Rehabilitation Exercise
,”
Clin. Biomech.
,
13
(
6
), pp.
403
413
.10.1016/S0268-0033(98)00094-1
21.
Abdel-Rahman
,
E. M.
, and
Hefzy
,
M. S.
,
1998
, “
Three-Dimensional Dynamic Behavior of the Human Knee Joint Under Impact Loading
,”
Med. Eng. Phys.
,
20
(
4
), pp.
276
290
.10.1016/S1350-4533(98)00010-1
22.
Most
,
E.
,
Axe
,
J.
,
Rubash
,
H.
, and
Li
,
G.
,
2004
, “
Sensitivity of the Knee Joint Kinematics Calculation to Selection of Flexion Axes
,”
J. Biomech.
,
37
(
11
), pp.
1743
1748
.10.1016/j.jbiomech.2004.01.025
23.
Winter
,
D. A.
,
2009
,
Biomechanics and Motor Control of Human Movement
, John
Wiley & Sons
, Hoboken, NJ.
24.
Blajer
,
W.
,
Dziewiecki
,
K.
, and
Mazur
,
Z.
,
2007
, “
Multibody Modeling of Human Body for the Inverse Dynamics Analysis of Sagittal Plane Movements
,”
Multibody Syst. Dyn.
,
18
(
2
), pp.
217
232
.10.1007/s11044-007-9090-2
25.
Niu
,
W.
,
Feng
,
T.
,
Jiang
,
C.
,
Zhang
,
M.
, and
Khraibi
,
A. A.
,
2014
, “
Peak Vertical Ground Reaction Force During Two-Leg Landing: A Systematic Review and Mathematical Modeling
,”
BioMed Res. Int.
,
2014
(
1
), pp.
1
10
.10.1155/2014/126860
26.
Samozino
,
P.
,
Morin
,
J.-B.
,
Hintzy
,
F.
, and
Belli
,
A.
,
2008
, “
A Simple Method for Measuring Force, Velocity and Power Output During Squat Jump
,”
J. Biomech.
,
41
(
14
), pp.
2940
2945
.10.1016/j.jbiomech.2008.07.028
27.
Cleather
,
D. J.
,
Goodwin
,
J. E.
, and
Bull
,
A. M. J.
,
2013
, “
Hip and Knee Joint Loading During Vertical Jumping and Push Jerking
,”
Clin. Biomech.
,
28
(
1
), pp.
98
103
.10.1016/j.clinbiomech.2012.10.006
28.
Kernozek
,
T. W.
, and
Ragan
,
R. J.
,
2008
, “
Estimation of Anterior Cruciate Ligament Tension From Inverse Dynamics Data and Electromyography in Females During Drop Landing
,”
Clin. Biomech.
,
23
(
10
), pp.
1279
1286
.10.1016/j.clinbiomech.2008.08.001
29.
Murakami
,
K.
,
Hamai
,
S.
,
Okazaki
,
K.
,
Ikebe
,
S.
,
Shimoto
,
T.
,
Hara
,
D.
,
Mizu-Uchi
,
H.
,
Higaki
,
H.
, and
Iwamoto
,
Y.
,
2016
, “
In Vivo Kinematics of Healthy Male Knees During Squat and Golf Swing Using Image-Matching Techniques
,”
Knee
,
23
(
2
), pp.
221
226
.10.1016/j.knee.2015.08.004
You do not currently have access to this content.