Abstract

In this paper, the optimized decomposition method, which was developed to solve integer-order differential equations, will be modified and extended to handle nonlinear fractional differential equations. Fractional derivatives will be considered in terms of Caputo sense. The suggested modifications design new optimized decompositions for the series solutions depending on linear approximations of the nonlinear equations. Two optimized decomposition algorithms have been introduced to obtain approximate solutions of broad classes of initial value problems (IVPs) consisting of nonlinear fractional ordinary differential equations (ODEs) and partial differential equations (PDEs). A comparative study was conducted between the proposed algorithms and the Adomian decomposition method (ADM) by means of some test illustration problems. The implemented numerical simulation results showed that the proposed algorithms give better accuracy and convergence, and reduce the complexity of computational work compared to the Adomian's approach. This confirms the belief that the optimized decomposition method will be used effectively and widely as a powerful tool in solving various fractional differential equations.

References

1.
Oldham
,
K. B.
, and
Spanier
,
J.
,
1994
,
The Fractional Calculus
,
Academic
,
New York
.
2.
Miller
,
K. S.
, and
Ross
,
B.
,
1993
,
An Introduction to the Fractional Calculus and Fractional Differential Equations
,
Wiley
,
New York
.
3.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic
,
New York
.
4.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
,
1993
,
Fractional Integrals and Derivatives: Theory and Applications
,
Gordon and Breach
,
Amsterdam, The Netherlands
.
5.
Hilfer
,
R.
,
2000
,
Applications of Fractional Calculus in Physics
,
World Scientific
,
Boston, MA
.
6.
Baleanu
,
D.
,
Diethelm
,
K.
,
Scalas
,
E.
, and
Trujillo
,
J. J.
,
2012
,
Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos
,
World Scientific
,
Boston, MA
.
7.
Magin
,
R. L.
,
2006
,
Fractional Calculus in Bioengineering
,
Begell House Publishers
,
New York
.
8.
Sabatier
,
J.
,
Agrawal
,
O. P.
, and
Machado
,
J. A. T.
,
2007
,
Advances in Fractional Calculus
,
Springer
,
Dordrecht
.
9.
Raberto
,
M.
,
Scalas
,
E.
, and
Mainardi
,
F.
,
2002
, “
Waiting-Times and Returns in High Frequency Financial Data: An Empirical Study
,”
Phys. A.
,
314
(
1–4
), pp.
749
755
.10.1016/S0378-4371(02)01048-8
10.
Momani
,
S.
, and
Odibat
,
Z.
,
2007
, “
Numerical Approach to Differential Equations of Fractional Orders
,”
J. Comput. Appl. Math.
,
207
(
1
), pp.
96
110
.10.1016/j.cam.2006.07.015
11.
Yadav
,
S.
,
Kumar
,
D.
,
Singh
,
J.
, and
Baleanu
,
D.
,
2021
, “
Analysis and Dynamics of Fractional Order Covid-19 Model With Memory Effect
,”
Results Phys.
,
24
, p.
104017
.10.1016/j.rinp.2021.104017
12.
Singh
,
J.
,
2020
, “
Analysis of Fractional Blood Alcohol Model With Composite Fractional Derivative
,”
Chaos Solitons Fractals
,
140
, p.
110127
.10.1016/j.chaos.2020.110127
13.
Shawagfeh
,
N.
,
2002
, “
Analytical Approximate Solutions for Nonlinear Fractional Differential Equations
,”
Appl. Math. Comput.
,
131
(
2–3
), pp.
517
529
.10.1016/S0096-3003(01)00167-9
14.
Odibat
,
Z.
,
Momani
,
S.
, and
Xu
,
H.
,
2010
, “
A Reliable Algorithm of Homotopy Analysis Method for Solving Nonlinear Fractional Differential Equations
,”
Appl. Math. Modell.
,
34
(
3
), pp.
593
600
.10.1016/j.apm.2009.06.025
15.
Odibat
,
Z.
, and
Momani
,
S.
,
2009
, “
The Variational Iteration Method: An Effcient Scheme for Handling Fractional Partial Differential Equations in Fluid Mechanics
,”
Comput. Math. Appl.
,
58
(
11–12
), pp.
2199
2208
.10.1016/j.camwa.2009.03.009
16.
Anwar
,
A. M.
,
Jarad
,
F.
,
Baleanu
,
D.
, and
Ayaz
,
F.
,
2013
, “
Fractional Caputo Heat Equation Within the Double Laplace Transform
,”
Romanian J. Phys.
,
58
(
1
), pp.
15
22
.https://rjp.nipne.ro/2013_58_1-2/0015_0022.pdf
17.
Diethelm
,
K.
,
Ford
,
N.
, and
Freed
,
A.
,
2002
, “
A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
,”
Nonlinear Dyn.
,
29
(
1/4
), pp.
3
22
.10.1023/A:1016592219341
18.
Odibat
,
Z.
,
2021
, “
A Universal Predictor-Corrector Algorithm for Numerical Simulation of Generalized Fractional Differential Equations
,”
Nonlinear Dyn.
,
105
(
3
), pp.
2363
2374
.10.1007/s11071-021-06670-2
19.
Adomian
,
G.
,
1994
,
Solving Frontier Problems of Physics: The Decomposition Method
,
Kluwer Academic Publishers
,
Boston, MA
.
20.
Adomian
,
G.
,
1988
, “
A Review of the Decomposition Method in Applied Mathematics
,”
J. Math. Anal. Appl.
,
135
(
2
), pp.
501
544
.10.1016/0022-247X(88)90170-9
21.
Wu
,
F.
, and
Huang
,
L. L.
,
2014
, “
Approximate Solutions of Fractional Riccati Equations Using the Adomian Decomposition Method
,”
Abstract Appl. Anal.
,
2014
, pp.
1
4
.10.1155/2014/957590
22.
Momani
,
S.
, and
Shawagfeh
,
N.
,
2006
, “
Decomposition Method for Solving Fractional Riccati Differential Equations
,”
Appl. Math. Comput.
,
182
(
2
), pp.
1083
1092
.10.1016/j.amc.2006.05.008
23.
Jafari
,
H.
, and
Gejji
,
V. D.
,
2006
, “
Positive Solutions of Nonlinear Fractional Boundary Value Problems Using Adomian Decomposition Method
,”
Appl. Math. Comput.
,
180
(
2
), pp.
700
706
.10.1016/j.amc.2006.01.007
24.
Guo
,
P.
,
2019
, “
The Adomian Decomposition Method for a Type of Fractional Differential Equations
,”
J. Appl. Math. Phys.
,
07
(
10
), pp.
2459
2466
.10.4236/jamp.2019.710166
25.
Hu
,
Y.
,
Luo
,
Y.
, and
Lu
,
Z.
,
2008
, “
Analytical Solution of the Linear Fractional Differential Equation by Adomian Decomposition Method
,”
J. Comput. Appl. Math.
,
215
(
1
), pp.
220
229
.10.1016/j.cam.2007.04.005
26.
Momani
,
S.
, and
Odibat
,
Z.
,
2007
, “
Numerical Comparison of Methods for Solving Linear Differential Equations of Fractional Order
,”
Chaos Soliton Fract.
,
31
(
5
), pp.
1248
1255
.10.1016/j.chaos.2005.10.068
27.
Laoubi
,
M.
,
Odibat
,
Z.
, and
Maayeh
,
M.
, ,
2022
, “
A Legendre-Based Approach of the Optimized Decomposition Method for Solving Nonlinear Caputo-Type Fractional Differential Equations
,”
Math. Methods Appl. Sci.
,
45
(
12
), pp.
7307
7321
.10.1002/mma.8237
28.
Yu
,
Q.
,
Liu
,
F.
,
Anh
,
V.
, and
Turner
,
I.
,
2008
, “
Solving Linear and Non-Linear Space–Time Fractional Reaction–Diffusion Equations by the Adomian Decomposition Method
,”
Int. J. Numer. Methods Eng.
,
74
(
1
), pp.
138
158
.10.1002/nme.2165
29.
El-Wakil
,
S. A.
,
Elhanbaly
,
A.
, and
Abdou
,
M. A.
,
2006
, “
Adomian Decomposition Method for Solving Fractional Nonlinear Differential Equations
,”
Appl. Math. Comput.
,
182
(
1
), pp.
313
324
.10.1016/j.amc.2006.02.055
30.
Jafari
,
H.
, and
Gejji
,
V. D.
,
2006
, “
Solving Linear and Nonlinear Fractional Diffusion and Wave Equations by Adomian Decomposition
,”
Appl. Math. Comput.
,
180
(
2
), pp.
488
497
.10.1016/j.amc.2005.12.031
31.
Saelao
,
J.
, and
Yokchoo
,
N.
,
2020
, “
The Solution of Klein–Gordon Equation by Using Modified Adomian Decomposition Method
,”
Math. Comput. Simulat.
,
171
, pp.
94
102
.10.1016/j.matcom.2019.10.010
32.
Song
,
L.
, and
Wang
,
W.
,
2013
, “
A New Improved Adomian Decomposition Method and Its Application to Fractional Differential Equations
,”
Appl. Math. Model.
,
37
(
3
), pp.
1590
1598
.10.1016/j.apm.2012.03.016
33.
Birajdar
,
G. A.
,
2014
, “
Numerical Solution of Time Fractional Navier-Stokes Equation by Discrete Adomian Decomposition Method
,”
Nonlinear Eng.
,
3
(
1
), pp.
21
26
.10.1515/nleng-2012-0004
34.
Momani
,
S.
, and
Odibat
,
Z.
,
2006
, “
Analytical Solution of a Time-Fractional Navier–Stokes Equation by Adomian Decomposition Method
,”
Appl. Math. Comput.
,
177
(
2
), pp.
488
494
.10.1016/j.amc.2005.11.025
35.
Momani
,
S.
,
2005
, “
An Explicit and Numerical Solutions of the Fractional KdV Equation
,”
Math. Comput. Simul.
,
70
(
2
), pp.
110
118
.10.1016/j.matcom.2005.05.001
36.
Dhaigude
,
D. B.
,
Birajdar
,
G. A.
, and
Nikam
,
V. R.
,
2012
, “
Adomain Decomposition Method for Fractional Benjamin-Bona-Mahony-Burger's Equations
,”
Int. J. Appl. Math. Mech.
,
8
(
12
), pp.
42
51
.
37.
Odibat
,
Z.
, and
Momani
,
S.
,
2006
, “
Approximate Solutions for Boundary Value Problems of Time-Fractional Wave Equation
,”
Appl. Math. Comput.
,
181
(
1
), pp.
767
774
.10.1016/j.amc.2006.02.004
38.
Duan
,
J. S.
,
Rach
,
R.
,
Baleanu
,
D.
, and
Wazwaz
,
A. M.
,
2012
, “
A Review of the Adomian Decomposition Method and Its Applications to Fractional Differential Equations
,”
Commun. Fractional Calculus
,
3
(
2
), pp.
73
99
.
39.
Li
,
C.
, and
Wang
,
Y.
,
2009
, “
Numerical Algorithm Based on Adomian Decomposition for Fractional Differential Equations
,”
Comput. Math. Appl.
,
57
(
10
), pp.
1672
1681
.10.1016/j.camwa.2009.03.079
40.
Odibat
,
Z.
,
2020
, “
An Optimized Decomposition Method for Nonlinear Ordinary and Partial Differential Equations
,”
Phys. A.
,
541
(
1
), p.
123323
.10.1016/j.physa.2019.123323
41.
Odibat
,
Z.
,
2021
, “
The Optimized Decomposition Method for a Reliable Treatment of IVPs for Second Order Differential Equations
,”
Phys. Scr.
,
96
(
9
), p.
095206
.10.1088/1402-4896/ac065e
42.
Abbaoui
,
K.
, and
Cherruault
,
Y.
,
1995
, “
New Ideas for Proving Convergence of Decomposition Methods
,”
Comput. Math. Appl.
,
29
(
7
), pp.
103
108
.10.1016/0898-1221(95)00022-Q
43.
Daftardar-Gejji
,
V.
, and
Jafari
,
H.
,
2005
, “
Adomian Decomposition: A Tool for Solving a System of Fractional Differential Equations
,”
Math. Anal. Appl.
,
301
(
2
), pp.
508
518
.10.1016/j.jmaa.2004.07.039
44.
Duan
,
J. S.
,
Chaolu
,
T.
,
Rach
,
R.
, and
Lu
,
L.
,
2013
, “
The Adomian Decomposition Method With Convergence Acceleration Techniques for Nonlinear Fractional Differential Equations
,”
Comput. Math. Appl.
,
66
(
5
), pp.
728
736
.10.1016/j.camwa.2013.01.019
45.
Gilding
,
B. H.
, and
Kersner
,
R.
,
2004
,
Travelling Waves in Nonlinear Diffusion Convection Reaction
,
Birkhuser
,
Basel, Switzerland
.
You do not currently have access to this content.