Abstract

The noise of disk brake pair has always been a difficult problem for enterprises and researchers. Many factors induce the noise of disk brake pair, among which the influence of the third body particle flow generated by the external gravel or its own abrasive debris has not been paid much attention. Three-body contact has different friction properties and requires a new friction model to describe it. This paper presents a friction model of disk brake pair on the basis of the predecessors. The new model further considers the influence of the third body on the nonlinear behavior of the brake system on the basis of the previous model of the brake pair. Through numerical simulation, it is concluded that the geometry size of the third body has great influence on the stability interval of the braking system. Finally, the influence of the third body particles on the motion stability of the braking system under different particle size ranges is studied. It is found that larger particle size can improve the motion stability of the system.

References

1.
Thompson
,
J. K.
,
2011
, “
Brake NVH: Testing and Measurements
,”
SAE
Paper No. 10.4271/R-399. 10.4271/10.4271/R-399
2.
Cunefare
,
K. A.
, and
Graf
,
A. J.
,
2002
, “
Disc Brake Rotor Squeal Suppression Using Dither Control
,”
SAE
Paper No. 2001-01-1605. 10.4271/2001-01-1605
3.
Shin
,
K.
,
Brennan
,
M. J.
,
Oh
,
J.-E.
, and
Harris
,
C. J.
,
2002
, “
Analysis of Disc Brake Noise Using a Two-Degree-of-Freedom Model
,”
J. Sound Vib.
,
254
(
5
), pp.
837
848
.10.1006/jsvi.2001.4127
4.
Shin
,
K.
,
Oh
,
J. E.
, and
Brennan
,
M. J.
,
2002
, “
Nonlinear Analysis of Friction Induced Vibrations of a Two-Degree-of-Freedom Model for Disc Brake Squeal Noise
,”
JSME Int. J.
,
45
(
2
), pp.
426
432
.10.1299/jsmec.45.426
5.
Wei
,
D.
,
Zhu
,
W.
,
Wang
,
B.
,
Ma
,
Q.
, and
Kang
,
Z.
,
2015
, “
Effects of Brake Pressures on Stick-Slip Bifurcation and Chaos of the Vehicle Brake System
,”
J. Vibroeng.
,
17
(
5
), pp.
2718
2732
.
6.
Wei
,
D.
,
Ruan
,
J.
,
Zhu
,
W.
, and
Kang
,
Z.
,
2016
, “
Properties of Stability, Bifurcation, and Chaos of the Tangential Motion Disk Brake
,”
J Sound Vib.
,
375
, pp.
353
365
.10.1016/j.jsv.2016.04.022
7.
Godet
,
M.
,
1984
, “
The Third-Body Approach: A Mechanical View of Wear
,”
Wear
,
100
(
1–3
), pp.
437
452
.10.1016/0043-1648(84)90025-5
8.
Chromik
,
R. R.
, and
Zhang
,
Y.
,
2018
, “
Nanomechanical Testing of Third Bodies
,”
Curr. Opin. Solid State Mater. Sci.
,
22
(
4
), pp.
142
155
.10.1016/j.cossms.2018.05.001
9.
Li
,
Q.
,
Lyashenko
,
I.
, and
Starcevic
,
J.
,
2021
, “
An Experimental Study on Third-Body Particle Transport in Sliding Contact (Video of Experiment)
,”
Facta Univ. Ser. Mech. Eng.
,
19
(
1
), pp.
1
5
.
10.
Krejci
,
P.
, and
Petrov
,
A.
,
2018
, “
A Mathematical Model for the Third-Body Concept
,”
Math. Mech. Solids (MMS)
, 23(3), pp.
420
432
.10.1177/1081286517732827
11.
Sha
,
Z.
,
Ru
,
G.
,
Yin
,
J.
,
Liu
,
Y.
,
Ma
,
F.
,
Yang
,
D.
, and
Zhang
,
S.
,
2019
, “
Research on Motion Characteristics of Single Particle Third Body in Braking Process Based on W-M Fractal Feature
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
692
(
1
), p.
012011
.10.1088/1757-899X/692/1/012011
12.
Mollon
,
G.
,
2019
, “
Solid Flow Regimes Within Dry Sliding Contacts
,”
Tribol. Lett.
,
67
(
4
), pp.
1
20
.10.1007/s11249-019-1233-0
13.
Berthier
,
Y.
,
Descartes
,
S.
,
Busquet
,
M.
,
Niccolini
,
E.
,
Desrayaud
,
C.
,
Baillet
,
L.
, and
Baietto-Dubourg
,
M. C.
,
2004
, “
The Role and Effects of the Third Body in the Wheel–Rail Interaction
,”
Fatigue Fract. Eng. Mater. Struct.
,
27
(
5
), pp.
423
436
.10.1111/j.1460-2695.2004.00764.x
14.
Zhang
,
P.
,
Zeng
,
L.
,
Mi
,
X.
,
Lu
,
Y.
,
Luo
,
S.
, and
Zhai
,
W.
,
2021
, “
Comparative Study on the Fretting Wear Property of 7075 Aluminum Alloys Under Lubricated and Dry conditions - ScienceDirect
,”
Wear
,
474-475
, p.
203760
.10.1016/j.wear.2021.203760
15.
Su
,
L.
,
Gao
,
F.
,
Wang
,
L.
,
Han
,
X.
,
Fu
,
R.
, and
Tao
,
H.
,
2019
, “
Iron Powder Third Body Contribution to Friction Performance of Copper-Matrix Friction Composites
,”
Tribol. Trans.
,
62
(
3
), pp.
486
495
.10.1080/10402004.2019.1576956
16.
Lazim
,
A. R. M.
,
Kchaou
,
M.
,
Hamid
,
M. K. A.
, and
Abu Bakar
,
A. R.
,
2016
, “
Squealing Characteristics of Worn Brake Pads Due to Silica Sand Embedment Into Their Friction Layers
,”
Wear
,
358–359
, pp.
123
136
.10.1016/j.wear.2016.04.006
17.
Kchaou
,
M.
,
Lazim
,
A. M.
,
Hamid
,
M. A.
, and
Bakar
,
A. A.
,
2017
, “
Experimental Studies of Friction-Induced Brake Squeal: Influence of Environmental Sand Particles in the Interface Brake Pad-Disc
,”
Tribol Int.
,
110
, pp.
307
317
.10.1016/j.triboint.2017.02.032
18.
Cho
,
K. H.
,
Jang
,
H.
,
Hong
,
Y.-S.
,
Kim
,
S. J.
,
Basch
,
R. H.
, and
Fash
,
J. W.
,
2008
, “
The Size Effect of Zircon Particles on the Friction Characteristics of Brake Lining Materials
,”
Wear
,
264
(
3–4
), pp.
291
297
.10.1016/j.wear.2007.03.018
19.
Lee
,
E. J.
,
Hwang
,
H. J.
,
Lee
,
W. G.
,
Cho
,
K. H.
, and
Jang
,
H.
,
2010
, “
Morphology and Toughness of Abrasive Particles and Their Effects on the Friction and Wear of Friction Materials: A Case Study With Zircon and Quartz
,”
Tribol. Lett.
,
37
(
3
), pp.
637
644
.10.1007/s11249-009-9561-0
20.
Jang
,
H.
, and
Kim
,
S. J.
,
2000
, “
The Effects of Antimony Trisulfide (sb2s3) and Zirconium Silicate (zrsio4) in the Automotive Brake Friction Material on Friction Characteristics
,”
Wear
,
239
(
2
), pp.
229
236
.10.1016/S0043-1648(00)00314-8
21.
Chang
,
Y. H.
,
Joo
,
B. S.
,
Sang
,
M. L.
, and
Jang
,
H.
,
2018
, “
Size Effect of Tire Rubber Particles on Tribological Properties of Brake Friction Materials
,”
Wear
,
394–395
, pp.
80
86
.10.1016/j.wear.2017.10.004
22.
Zhang
,
Y.
,
Mollon
,
G.
, and
Descartes
,
S.
,
2020
, “
Significance of Third Body Rheology in Friction at a Dry Sliding Interface Observed by a Multibody Meshfree Model: Influence of Cohesion Between Particles
,”
Tribol. Int.
,
145
, p.
106188
.10.1016/j.triboint.2020.106188
23.
Su
,
L.
,
Gao
,
F.
,
Tao
,
H.
,
Han
,
X.
, and
Fu
,
R.
,
2018
, “
Correlations Between Third Body Evolution and Tribological Performance of Copper-Matrix Friction Material Under Abrasive Paper Interference Conditions
,”
Proc. Inst. Mech. Eng., Part J
,
232
(
6
), pp.
711
721
.10.1177/1350650117726887
24.
Gao
,
R.
,
Liu
,
W.
, and
Chang
,
Q.
,
2021
, “
Tribological Property of Biocarbon-Based Magnesium Silicate Hydroxide Nanocomposite as Lubricant Additive at Different Concentrations of Additive and Dispersant
,”
ASME J. Tribol.
,
143
(
7
), p.
071901
.10.1115/1.4048725
25.
Ahmadi
,
A.
, and
Sadeghi
,
F.
,
2021
, “
A Novel Three-Dimensional Finite Element Model to Simulate Third Body Effects on Fretting Wear of Hertzian Point Contact in Partial Slip
,”
ASME J. Tribol.
,
143
(
4
), p.
041502
.10.1115/1.4048386
26.
Singla
,
N.
,
Brunel
,
J.-F.
,
Mège-Revil
,
A.
,
Kasem
,
H.
, and
Desplanques
,
Y.
,
2020
, “
Mège-Revil A. Experiment to Investigate the Relationship Between the Third-Body Layer and the Occurrence of Squeals in Dry Sliding Contact
,”
Tribol. Lett.
,
68
(
1
), p. 4.10.1007/s11249-019-1244-x
27.
Renouf
,
M.
,
Cao
,
H. P.
, and
Nhu
,
V. H.
,
2011
, “
Multiphysical Modeling of Third-Body Rheology
,”
Tribol. Int.
,
44
(
4
), pp.
417
425
.10.1016/j.triboint.2010.11.017
28.
Bhushan
,
B.
, and
Nosonovsky
,
M.
,
2004
, “
Comprehensive Model for Scale Effects in Friction Due to Adhesion and Two- and Three-Body Deformation (Plowing)
,”
Acta Mater.
,
52
(
8
), pp.
2461
2474
.10.1016/j.actamat.2004.01.038
29.
Horng
,
J. H.
,
Wei
,
C. C.
,
Tsai
,
H. J.
, and
Shiu
,
B. C.
,
2009
, “
A Study of Surface Friction and Particle Friction Between Rough Surfaces
,”
Wear
,
267
(
5–8
), pp.
1257
1263
.10.1016/j.wear.2009.02.017
30.
Tadayoshi
,
M.
,
Yoshitsugu
,
G.
,
Noboru
,
S.
,
Kenji
,
A.
,
Yoshihiro
,
O.
, and
Yosuke
,
A.
,
2016
, “
Friction Coefficient Variation Mechanism Under Wet Condition in Disk Brake (Variation Mechanism Contributing Wet Wear Debris)
,”
SAE Int. J. Passenger Cars-Mech. Syst.
,
9
(
3
), pp.
1227
34
.10.4271/2016-01-1943
31.
Morgan
,
F.
,
Muskat
,
M.
, and
Reed
,
D. W.
,
1941
, “
Studies in Lubrication: X. Friction Phenomena and the Stick‐Slip Process
,”
J. Appl. Phys.
,
12
(
10
), pp.
743
752
.10.1063/1.1712861
32.
Wen
,
Y. K.
,
1976
, “
Method for Random Vibration of Hysteretic Systems
,”
ASCE J. Eng. Mech. Div.
,
102
(
2
), pp.
249
263
.10.1061/JMCEA3.0002106
33.
Li
,
C. B.
, and
Pavelescu
,
D.
,
1982
, “
The Friction-Speed Relation and Its Influence on the Critical Velocity of Stick-Slip Motion
,”
Wear
,
82
(
3
), pp.
277
289
.10.1016/0043-1648(82)90223-X
34.
Duan
,
C.
, and
Singh
,
R.
,
2005
, “
Stick-Slip Behavior of Torque Converter Clutch
,”
2005 SAE Noise and Vibration Conference and Exhibition
,
Traverse City
,
MI
, May 16, pp.
73
83
.
35.
Stefański
,
A.
,
Wojewoda
,
J.
,
Wiercigroch
,
M.
, and
Kapitaniak
,
T.
,
2006
, “
Regular and Chaotic Oscillations of Friction Force
,”
Proc Inst. Mech. Eng., Part C
,
220
(
3
), pp.
273
284
.10.1243/09544062C09305
36.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME Trans ASME J. Tribol.
,
109
(
2
), pp.
257
263
.10.1115/1.3261348
37.
Ibrahim
,
R. A.
,
1994
, “
Friction-Induced Vibration, Chatter, Squeal, and Chaos—Part I: Mechanics of Contact and Friction
,”
ASME Appl. Mech. Rev.
,
47
(
7
), pp.
227
253
.10.1115/1.3111080
38.
Vrande
,
B.
,
Campen
,
D.
, and
Kraker
,
A. D.
,
1999
, “
An Approximate Analysis of Dry-Friction-Induced Stick-Slip Vibrations by a Smoothing Procedure
,”
Nonlinear Dyn.
,
19
(
2
), pp.
159
71
.10.1023/A:1008306327781
39.
Deng
,
F.
,
Tsekenis
,
G.
, and
Rubinstein
,
S. M.
,
2019
, “
Simple Law for Third-Body Friction
,”
Phys. Rev. Lett.
,
122
(
13
), p.
135503
.10.1103/PhysRevLett.122.135503
40.
Pecora
,
L. M.
, and
Carroll
,
T. L.
,
1991
, “
Driving Systems With Chaotic Signals
,”
Phys. Rev. A
,
44
(
4
), pp.
2374
2383
.10.1103/PhysRevA.44.2374
You do not currently have access to this content.