Abstract

Nonlinear energy sink (NES) systems, when applied to a physical system with multiple interference sources, exhibit abundant nonlinear dynamic behaviors. However, current research in this respect is limited within the theoretical scope of deterministic systems. According to the theory of cell mapping, this paper introduces a parallel restructured algorithm to improve the performance of cell mapping and cell processing, and a parallelized multidegrees-of-freedom (DOF) cell mapping (PMDCM) method is given. With the method, the global behavior of NES systems is analyzed so that the dynamical behavior of multiple stable attractors within typical parameter intervals can be captured. The research results show that for NES systems, there is the phenomenon of multiple stable attractors coexisting in multiple typical parameter intervals, which occurs between periodic and periodic attractor, periodic and quasi-periodic, periodic and chaotic attractor. While revealing the corresponding relationship between different types of attractors and their basin of attraction, these findings verify that the new cell mapping method has high computational efficiency and accuracy and can provide a theoretical basis for the study of high-dimensional nonlinear systems' global behavior and optimal control.

References

1.
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
,
Kerschen
,
G.
, and
Lee
,
Y. S.
,
2008
,
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems
,
Springer-Verlag
,
New York, Chap. 7
.
2.
Gendelman
,
O.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
Closkey
,
R. M.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators: Part I-Dynamics of the Underlying Hamiltonian Systems
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
34
41
.10.1115/1.1345524
3.
Vakakis
,
A. F.
, and
Gendelman
,
O.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators: Part II-Resonance Capture
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
42
48
.10.1115/1.1345525
4.
Cao
,
Y. B.
,
Yao
,
H. L.
,
Li
,
Q. F.
,
Yang
,
P. R.
, and
Wen
,
B. C.
,
2020
, “
Vibration Mitigation and Dynamics of a Rotor-Blade System With an Attached Nonlinear Energy Sink
,”
Int. J. Non-Linear Mech.
,
127
, p.
103614
.10.1016/j.ijnonlinmec.2020.103614
5.
Aghayari
,
J.
,
Bab
,
S.
,
Safarpour
,
P.
, and
Rahi
,
A.
,
2021
, “
A Novel Modal Vibration Reduction of a Disk-Blades of a Turbine Using Nonlinear Energy Sinks on the Disk
,”
Mech. Mach. Theory
,
155
, p.
104048
.10.1016/j.mechmachtheory.2020.104048
6.
Mamaghani
,
A. E.
,
Khadem
,
S. E.
, and
Bab
,
S.
,
2016
, “
Vibration Control of a Pipe Conveying Fluid Under External Periodic Excitation Using a Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
86
(
3
), pp.
1761
1795
.10.1007/s11071-016-2992-x
7.
Wierschem
,
N. E.
,
Hubbard
,
S. A.
,
Luo
,
J.
,
Fahnestock
,
L. A.
,
Spencer
,
B. F.
,
Mcfarland
,
D. M.
,
Quinn
,
D. D.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2017
, “
Response Attenuation in a Large-Scale Structure Subjected to Blast Excitation Utilizing a System of Essentially Nonlinear Vibration Absorbers
,”
J. Sound Vib.
,
389
, pp.
52
72
.10.1016/j.jsv.2016.11.003
8.
Bergeot
,
B.
,
Bellizzi
,
S.
, and
Cochelin
,
B.
,
2017
, “
Passive Suppression of Helicopter Ground Resonance Using Nonlinear Energy Sinks Attached on the Helicopter Blades
,”
J. Sound Vib.
,
392
, pp.
41
55
.10.1016/j.jsv.2016.12.039
9.
Tian
,
W.
,
Li
,
Y. M.
,
Li
,
P.
,
Yang
,
Z. C.
, and
Zhao
,
T.
,
2019
, “
Passive Control of Nonlinear Aeroelasticity in Hypersonic 3-D Wing With a Nonlinear Energy Sink
,”
J. Sound Vib.
,
462
, p.
114942
.10.1016/j.jsv.2019.114942
10.
Hasan
,
M. A.
,
Starosvetsky
,
Y.
,
Vakakis
,
A. F.
, and
Manevitch
,
L. I.
,
2013
, “
Nonlinear Targeted Energy Transfer and Macroscopic Analog of the Quantum Landau–Zener Effect in Coupled Granular Chains
,”
Physica D
,
252
, pp.
46
58
.10.1016/j.physd.2013.02.011
11.
Gendelman
,
O. V.
, and
Vakakis
,
A. F.
,
2018
, “
Introduction to a Topical Issue ‘Nonlinear Energy Transfer in Dynamical and Acoustical Systems’
,”
Philos. Trans. R. Soc., A
376
(
2127
), pp.
1
6
.
12.
Xiong
,
L.
,
Tang
,
L.
,
Liu
,
K.
, and
Mace
,
B. R.
,
2018
, “
Broadband Piezoelectric Vibration Energy Harvesting Using a Nonlinear Energy Sink
,”
J. Phys. D: Appl. Phys.
,
51
(
18
), p.
185502
.10.1088/1361-6463/aab9e3
13.
Li
,
H. Q.
, and
Li
,
A.
,
2021
, “
Potential of a Vibro-Impact Nonlinear Energy Sink for Energy Harvesting
,”
Mech. Syst. Signal Proc.
,
159
, p.
107827
.10.1016/j.ymssp.2021.107827
14.
Li
,
X. L.
,
Liu
,
K. F.
,
Xiong
,
L. Y.
, and
Tang
,
L. H.
,
2021
, “
Development and Validation of a Piecewise Linear Nonlinear Energy Sink for Vibration Suppression and Energy Harvesting
,”
J. Sound Vib.
,
503
, p.
116104
.10.1016/j.jsv.2021.116104
15.
Gendelman
,
O. V.
,
Starosvetsky
,
Y.
, and
Feldman
,
M.
,
2007
, “
Attractors of Harmonically Forced Linear Oscillator With Attached Nonlinear Energy Sink I: Description of Response Regimes
,”
Nonlinear Dyn.
,
51
(
1–2
), pp.
31
46
.10.1007/s11071-006-9167-0
16.
Gendelman
,
O. V.
, and
Starosvetsky
,
Y.
,
2009
, “
Vibration Absorption in Systems With a Nonlinear Energy Sink: Nonlinear Damping
,”
J. Sound Vib.
,
324
(
3–5
), pp.
916
939
.10.1016/j.jsv.2009.02.052
17.
Li
,
P.
,
Yang
,
Y. R.
, and
Xu
,
W.
,
2012
, “
Nonlinear Dynamics Analysis of a Two-Dimensional Thin Panel With an External Forcing in Incompressible Subsonic Flow
,”
Nonlinear Dyn.
,
67
(
4
), pp.
2483
2503
.10.1007/s11071-011-0162-8
18.
Parseh
,
M.
,
Dardel
,
M.
, and
Ghasemi
,
M. H.
,
2015
, “
Performance Comparison of Nonlinear Energy Sink and Linear Tuned Mass Damper in Steady-State Dynamics of a Linear Beam
,”
Nonlinear Dyn.
,
81
(
4
), pp.
1981
2002
.10.1007/s11071-015-2120-3
19.
Zang
,
J.
, and
Chen
,
L. Q.
,
2017
, “
Complex Dynamics of a Harmonically Excited Structure Coupled With a Nonlinear Energy Sink
,”
Acta Mech. Sin.
,
33
(
4
), pp.
801
822
.10.1007/s10409-017-0671-x
20.
Chen
,
J. E.
,
He
,
W.
,
Zhang
,
W.
,
Yao
,
M. H.
,
Liu
,
J.
, and
Sun
,
M.
,
2018
, “
Vibration Suppression and Higher Branch Responses of Beam With Parallel Nonlinear Energy Sinks
,”
Nonlinear Dyn.
,
91
(
2
), pp.
885
904
.10.1007/s11071-017-3917-z
21.
Chen
,
J. E.
,
Zhang
,
W.
,
Yao
,
M. H.
,
Liu
,
J.
, and
Sun
,
M.
,
2018
, “
Vibration Reduction in Truss Core Sandwich Plate With Internal Nonlinear Energy Sink
,”
Compos. Struct.
,
193
, pp.
180
188
.10.1016/j.compstruct.2018.03.048
22.
Li
,
S.
,
Lou
,
J. J.
,
Chai
,
K.
, and
Liu
,
S. Y.
,
2021
, “
Research on the Influence of Excitation Amplitude on Global Bifurcation Characteristics of Nonlinear Energy Sink System
,”
J. Ship Mech.
,
25
(
4
), pp.
479
488
.10.3969/j.issn.1007-7294.2021.04.011
23.
Hsu
,
C. S.
,
1980
, “
A Theory of Cell-to-Cell Mapping Dynamical Systems
,”
ASME J. Appl. Mech.
,
47
(
4
), pp.
931
939
.10.1115/1.3153816
24.
Hsu
,
C. S.
,
1987
,
Cell-to-Cell Mapping: A Method of Global Analysis for Nonlinear Systems
, Chap. 4,
Springer-Verlag
,
New York
.
25.
Hsu
,
C. S.
,
1981
, “
A Generalized Theory of Cell-to-Cell Mapping for Nonlinear Dynamical Systems
,”
ASME J. Appl. Mech.
,
48
(
3
), pp.
634
642
.10.1115/1.3157686
26.
Hsu
,
C. S.
,
1992
, “
Global Analysis by Cell Mapping
,”
Int. J. Bifurcation Chaos
,
02
(
04
), pp.
727
771
.10.1142/S0218127492000422
27.
Yue
,
X. L.
,
Wang
,
Y. Y.
,
Han
,
Q.
,
Xu
,
Y.
, and
Xu
,
W.
,
2019
, “
Probabilistic Response and Stochastic Bifurcation in a Turbulent Swirling Flow
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
11
), p.
111005
.10.1115/1.4044500
28.
Hsu
,
C. S.
,
1995
, “
Global Analysis of Dynamical Systems Using Posets and Digraphs
,”
Int. J. Bifurcation Chaos
,
05
(
04
), pp.
1085
1118
.10.1142/S021812749500079X
29.
Xu
,
J. X.
, and
Hong
,
L.
,
1999
, “
Generalized Cell Mapping Digraph Method for Global Analysis
,”
Chin. J. Theor. Appl. Mech.
,
31
(
6
), pp.
724
730
.10.6052/0459-1879-1999-6-1995-086
30.
He
,
Q.
,
Xu
,
W.
,
Li
,
S.
, and
Xiao
,
Y. Z.
,
2008
, “
The Digraph Cell Mapping Method Based on Composite Cell Space
,”
Acta Phys. Sin.
,
57
(
7
), pp.
4021
4028
.10.7498/aps.57.4021
31.
Zufiria
,
P. J.
, and
Guttalu
,
R. S.
,
1993
, “
The Adjoining Cell Mapping and Its Recursive Unraveling, Part I: Description of Adaptive and Recursive Algorithms
,”
Nonlinear Dyn.
,
4
(
3
), pp.
207
226
.10.1007/BF00046321
32.
Guttalu
,
R. S.
, and
Zufiria
,
P. J.
,
1993
, “
The Adjoining Cell Mapping and Its Recursive Unraveling, Part II: Application to Selected Problems
,”
Nonlinear Dyn.
,
4
(
4
), pp.
309
336
.10.1007/BF00120669
33.
Tongue
,
B. H.
,
1987
, “
On Obtaining Global Nonlinear System Characteristics Through Interpolated Cell Mapping
,”
Physica D
,
28
(
3
), pp.
401
408
.10.1016/0167-2789(87)90028-5
34.
Tongue
,
B. H.
, and
Gu
,
K.
,
1988
, “
Interpolated Cell Mapping of Dynamical Systems
,”
ASME J. Appl. Mech.
,
55
(
2
), pp.
461
466
.10.1115/1.3173700
35.
Tongue
,
B. H.
, and
Gu
,
K.
,
1988
, “
A Higher Order Method of Interpolated Cell Mapping
,”
J. Sound Vib.
,
125
(
1
), pp.
169
179
.10.1016/0022-460X(88)90424-5
36.
Jiang
,
J.
, and
Xu
,
J. X.
,
2012
,
Global Analysis of Nonlinear Dynamics
,
Springer-Verlag
,
New York
, Chap.
5
.
37.
Alasty
,
A.
, and
Shabani
,
R.
,
2006
, “
Chaotic Motions and Fractal Basin Boundaries in Spring-Pendulum System
,”
Nonlinear Anal.: Real World Appl.
,
7
(
1
), pp.
81
95
.10.1016/j.nonrwa.2005.01.003
You do not currently have access to this content.