Abstract

The flywheel energy storage system (FESS) is a closely coupled electric-magnetic-mechanical multiphysics system. It has complex nonlinear characteristics, which is difficult to be described in conventional models of the permanent magnet synchronous motor (PMSM) and active magnetic bearings (AMB). A novel nonlinear dynamic model is developed based on the alternative concept. Using back propagation (BP) neural network as a bridge, alternative mapping functions can be built from parametric calculation data of the finite element method (FEM) models. These functions are implemented in a system level simulation of the FESS. As a serial of linear equations, the alternative mapping function can precisely reproduce the electric-magnetic-mechanical characteristics in a satisfied speed and robust. Study of the cogging torque in the PMSM shows a good coincidence with the theory prediction. The current and displacement stiffness coefficients of the AMB are not constants as conventional linear models but change in different winding current and rotor positions. The influence parameters to the critical speed frequency and vibration amplitude are comprehensively studied, including the rotor mass, moment of inertial, eccentric distance, and the mass centroid offset. An operation boundary of the FESS is summarized to describe the feasible power load in different rotor rotation speed and PMSM winding current.

References

1.
Wang
,
Y.
,
Dayong
,
Z.
,
Qiang
,
J.
, and
Xunpeng
,
S.
,
2020
, “
Regional Renewable Energy Development in China: A Multidimensional Assessment
,”
Renewable Sustainable Energy Rev.
,
124
, p.
109797
.10.1016/j.rser.2020.109797
2.
Liu
,
J.
,
2019
, “
China's Renewable Energy Law and Policy: A Critical Review
,”
Renewable Sustainable Energy Rev.
,
99
, pp.
212
219
.10.1016/j.rser.2018.10.007
3.
D'Arcy
,
C.
,
Stacy-ann
,
R.
,
Catherine
,
B.
, and
Marjorie
,
M.
,
2021
, “
China's Climate Ambition: Revisiting Its First Nationally Determined Contribution and Centering a Just Transition to Clean Energy
,”
Energy Policy
,
155
, p.
112350
.10.1016/j.enpol.2021.112350
4.
Zhai
,
J.
,
Zhou
,
M.
,
Li
,
J.
,
Zhang
,
X.-P.
,
Li
,
G.
,
Ni
,
C.
, and
Zhang
,
W.
,
2021
, “
Hierarchical and Robust Scheduling Approach for VSC-MTDC Meshed AC/DC Grid With High Share of Wind Power
,”
IEEE Trans. Power Syst.
,
36
(
1
), pp.
793
1
.10.1109/TPWRS.2020.2988297
5.
Wu
,
Y. K.
,
Chang
,
S. M.
, and
Mandal
,
P.
,
2019
, “
Grid Connected Wind Power Plants: A Survey of the Integration Requirements in Modern Grid Codes
,”
IEEE Trans. Ind. Appl.
,
55
(
6
), pp.
5584
5593
.10.1109/TIA.2019.2934081
6.
Liu
,
Y.
,
Lin
,
J.
,
Wu
,
Q. H.
, and
Zhou
,
X.
,
2016
, “
Frequency Control of DFIG Based Wind Power Penetrated Power Systems Using Switching Angle Controller and AGC
,”
IEEE Trans. Power Syst.
,
32
(
2
), pp.
1
67
.10.1109/TPWRS.2016.2587938
7.
Díaz-González
,
F.
,
Andreas
,
S.
,
Oriol
,
G.
, and
Fernando
,
D. B.
,
2013
, “
Energy Management of Flywheel-Based Energy Storage Device for Wind Power Smoothing
,”
Appl. Energy
,
110
, pp.
207
219
.10.1016/j.apenergy.2013.04.029
8.
Thormann
,
B.
,
Philipp
,
P.
, and
Thomas
,
K.
,
2021
, “
Analyzing the Suitability of Flywheel Energy Storage Systems for Supplying High-Power Charging e-Mobility Use Cases
,”
J. Energy Storage
,
39
, p.
102615
.10.1016/j.est.2021.102615
9.
Pullen
,
K. R.
,
2019
, “
The Status and Future of Flywheel Energy Storage
,”
Joule
,
3
(
6
), pp.
1394
1399
.10.1016/j.joule.2019.04.006
10.
Mousavi
,
G. S. M.
,
Faraji
,
F.
,
Majazi
,
A.
, and
Al-Haddad
,
K.
,
2017
, “
A Comprehensive Review of Flywheel Energy Storage System Technology
,”
Renewable Sustainable Energy Rev.
,
67
, pp.
477
490
.10.1016/j.rser.2016.09.060
11.
Arani
,
A. A. K.
,
Karami
,
H.
,
Gharehpetian
,
G. B.
, and
Hejazi
,
M. S. A.
,
2017
, “
Review of Flywheel Energy Storage Systems Structures and Applications in Power Systems and Microgrids
,”
Renewable Sustainable Energy Rev.
,
69
, pp.
9
18
.10.1016/j.rser.2016.11.166
12.
Bolund
,
B.
,
Bernhoff
,
H.
, and
Leijon
,
M.
,
2007
, “
Flywheel Energy and Power Storage Systems
,”
Renewable Sustainable Energy Rev.
,
11
(
2
), pp.
235
258
.10.1016/j.rser.2005.01.004
13.
Wang
,
Y.
,
Xingjian
,
D.
,
Kunpeng
,
W.
, and
Xingfeng
,
G.
,
2018
, “
Progressive Failure Behavior of Composite Flywheels Stacked From Annular Plain Profiling Woven Fabric for Energy Storage
,”
Compos. Struct.
,
194
, pp.
377
387
.10.1016/j.compstruct.2018.04.036
14.
Tzeng
,
J.
,
Ryan
,
E.
, and
Paul
,
M.
,
2006
, “
Composite Flywheels for Energy Storage
,”
Compos. Sci. Technol.
,
66
(
14
), pp.
2520
2527
.10.1016/j.compscitech.2006.01.025
15.
Dai
,
X.
,
Yong
,
W.
,
Changliang
,
T.
, and
Xingfeng
,
G.
,
2016
, “
Mechanics Analysis on the Composite Flywheel Stacked From Circular Twill Woven Fabric Rings
,”
Compos. Struct.
,
155
, pp.
19
28
.10.1016/j.compstruct.2016.07.061
16.
Rastegarzadeh
,
S.
,
Mojtaba
,
M.
, and
Hossein
,
M.
,
2020
, “
A Novel Modular Designing for Multi-Ring Flywheel Rotor to Optimize Energy Consumption in Light Metro Trains
,”
Energy
,
206
, p.
118092
.10.1016/j.energy.2020.118092
17.
Bai
,
Y.
, and
Xiao-Zhang
,
Z.
,
2016
, “
Progressive Failure Analysis of Open-Hole Composite Hoops Under Radial Loading
,”
Compos. Part B Eng.
,
97
, pp.
336
343
.10.1016/j.compositesb.2016.05.029
18.
Arvin
,
A. C.
, and
Charles
,
E. B.
,
2006
, “
Optimal Design of Press-Fitted Filament Wound Composite Flywheel Rotors
,”
Compos. Struct.
,
72
(
1
), pp.
47
57
.10.1016/j.compstruct.2004.10.012
19.
Arabkoohsar
,
A.
, and
Meisam
,
S.
,
2020
, “
Chapter Five - Flywheel Energy Storage
,”
Mechanical Energy Storage Technologies
,
A.
Arabkoohsar
, eds.,
Academic Press
,
Waltham, U. S
, pp.
101
124
.
20.
Hughes
,
A.
, and
Bill
,
D.
,
2019
, “
Chapter 9—Synchronous, Permanent Magnet and Reluctance Motors and Drives
,”
Electric Motors and Drives
,
Austin
,
H.
and
Bill
,
D.
, eds., 5th ed.,
Newnes
,
Oxford, UK
, pp.
307
373
.
21.
Yang
,
Y.
,
Qiang
,
H.
,
Chunyun
,
F.
,
Shuiping
,
L.
, and
Peng
,
T.
,
2020
, “
Efficiency Improvement of Permanent Magnet Synchronous Motor for Electric Vehicles
,”
Energy
,
213
, p.
118859
.10.1016/j.energy.2020.118859
22.
Tripathi
,
S. M.
, and
Chandan
,
D.
,
2018
, “
Enhanced Efficiency in Vector Control of a Surface-Mounted PMSM Drive
,”
J. Franklin Inst.
,
355
(
5
), pp.
2392
2423
.10.1016/j.jfranklin.2018.01.007
23.
Hua
,
Y.
, and
Huangqiu
,
Z.
,
2020
, “
Rotor Radial Displacement Sensorless Control of Bearingless Permanent Magnet Synchronous Motor Based on MRAS and Suspension Force Compensation
,”
ISA Trans.
,
103
, pp.
306
318
.10.1016/j.isatra.2020.05.005
24.
Englert
,
T.
, and
Knut
,
G.
,
2018
, “
Nonlinear Model Predictive Torque Control of PMSMs for High Performance Applications
,”
Control Eng. Pract.
,
81
, pp.
43
54
.10.1016/j.conengprac.2018.08.023
25.
Łukasz
,
B.
,
Łukasz
,
W.
,
Marta
,
D. K.
, and
Natalia
,
S. K.
,
2021
, “
Research and Applications of Active Bearings: A State-of-the-Art Review
,”
Mech. Syst. Signal Process.
,
151
, p.
107423
.10.1016/j.ymssp.2020.107423
26.
Zhang
,
W.
, and
Zhu
,
H.
,
2017
, “
Radial Magnetic Bearings: An Overview
,”
Results Phys.
,
7
, pp.
3756
3766
.10.1016/j.rinp.2017.08.043
27.
Sotelo
,
G. G.
,
Andrade
,
R. D.
, and
Ferreira
,
A. C.
,
2007
, “
Magnetic Bearing Sets for a Flywheel System
,”
IEEE Trans. Appl. Superconduct.
,
17
(
2
), pp.
2150
2153
.10.1109/TASC.2007.899268
28.
Ma
,
W. S.
,
Zhang
,
W.
, and
Zhang
,
Y. F.
,
2021
, “
Stability and Multi-Pulse Jumping Chaotic Vibrations of a Rotor-Active Magnetic Bearing System With 16-Pole Legs Under Mechanical-Electric-Electromagnetic Excitations
,”
Eur. J. Mech. A/Solids
,
85
, p.
104120
.10.1016/j.euromechsol.2020.104120
29.
Amer
,
Y. A.
, and
Hegazy
,
U. H.
,
2007
, “
Resonance Behavior of a Rotor-Active Magnetic Bearing With Time-Varying Stiffness
,”
Chaos Solitons Fractals
,
34
(
4
), pp.
1328
1345
.10.1016/j.chaos.2006.04.040
30.
Bouaziz
,
S.
,
Belhadj
,
M. N.
,
Choley
,
J. Y.
,
Maatar
,
M.
, and
Haddar
,
M.
,
2013
, “
Transient Response of a Rotor-AMBs System Connected by a Flexible Mechanical Coupling
,”
Mechatronics
,
23
(
6
), pp.
573
580
.10.1016/j.mechatronics.2013.05.002
31.
Matsuda
,
K.
,
Kanemitsu
,
Y.
, and
Kijimoto
,
S.
,
2007
, “
Optimal Number of Stator Poles for Compact Active Radial Magnetic Bearings
,”
IEEE Trans. Magn.
,
43
(
8
), pp.
3420
3427
.10.1109/TMAG.2007.900184
32.
Chen
,
Q.
,
Liu
,
G.
, and
Zheng
,
S.
,
2015
, “
Suppression of Imbalance Vibration for AMBs Controlled Driveline System Using Double-Loop Structure
,”
J. Sound Vib.
,
337
, pp.
1
13
.10.1016/j.jsv.2014.09.042
33.
Chen
,
Q.
,
Liu
,
G.
, and
Han
,
B.
,
2017
, “
Unbalance Vibration Suppression for AMBs System Using Adaptive Notch Filter
,”
Mech. Syst. Signal Process.
,
93
, pp.
136
150
.10.1016/j.ymssp.2017.02.009
34.
Kiani
,
M.
,
Salarieh
,
H.
,
Alasty
,
A.
, and
Darbandi
,
S. M.
,
2016
, “
Hybrid Control of a Three-Pole Active Magnetic Bearing
,”
Mechatronics
,
39
, pp.
28
41
.10.1016/j.mechatronics.2016.07.004
35.
Xiangbo
,
X.
,
Shao
,
C.
, and
Yannan
,
Z.
,
2016
, “
Automatic Balancing of AMB Systems Using Plural Notch Filter and Adaptive Synchronous Compensation
,”
J. Sound Vib.
,
374
, pp.
29
42
.10.1016/j.jsv.2016.04.005
36.
Jiancheng
,
F.
,
Xiangbo
,
X.
,
Jiqiang
,
T.
, and
Hu
,
L.
,
2013
, “
Adaptive Complete Suppression of Imbalance Vibration in AMB Systems Using Gain Phase Modifier
,”
J. Sound Vib.
,
332
(
24
), pp.
6203
6215
.10.1016/j.jsv.2013.07.004
37.
Bauomy
,
H. S.
,
2012
, “
Stability Analysis of a Rotor-AMB System With Time Varying Stiffness
,”
J. Franklin Inst.
,
349
(
5
), pp.
1871
1890
.10.1016/j.jfranklin.2012.02.012
38.
Lyu
,
X.
,
Di
,
L.
,
Yoon
,
S. Y.
,
Lin
,
Z.
, and
Hu
,
Y.
,
2016
, “
A Platform for Analysis and Control Design: Emulation of Energy Storage Flywheels on a Rotor-AMB Test Rig
,”
Mechatronics
,
33
, pp.
146
160
.10.1016/j.mechatronics.2015.12.007
39.
Yao
,
J.
,
Yu
,
M.
,
Gao
,
W.
, and
Zeng
,
X.
,
2017
, “
Frequency Regulation Control Strategy for PMSG Wind-Power Generation System With Flywheel Energy Storage Unit
,”
IET Renewable Power Gener.
,
11
(
8
), pp.
1082
1093
.10.1049/iet-rpg.2016.0047
40.
Sui
,
Y.
,
Liang
,
S.
,
Huang
,
D.
,
Gao
,
M.
,
Wang
,
J.
,
Liu
,
Y.
,
Hu
,
S.
, and
Qin
,
L.
,
2020
, “
Simulation Study on Frequency Modulation Process of Coal Burning Plants With Auxiliary of Flywheel Energy Storage
,”
Proc. CSEE
,
40
(
08
), pp.
2597
2606
.10.13334/j.0258-8013.pcsee.190921
41.
Dai
,
X. J.
,
Zhang
,
C. P.
,
Wang
,
S. M.
,
Jiang
,
X. J.
, and
Zhong
,
L. S.
,
2014
, “
Design and Experimental Test of 500 kW Flywheel Energy Storage Power System
,”
Chin. J. Power Sources
,
38
(
6
), pp.
1123
1126
.10.3969/j.issn.1002-087X.2014.06.042
42.
Su
,
Y.
,
Gu
,
Y.
,
Keogh
,
P. S.
,
Yu
,
S.
, and
Ren
,
G.
,
2021
, “
Nonlinear Dynamic Simulation and Parametric Analysis of a Rotor-AMB-TDB System Experiencing Strong Base Shock Excitations
,”
Mech. Mach. Theory
,
155
, p.
104071
.10.1016/j.mechmachtheory.2020.104071
43.
Amodeo
,
S. J.
,
Leon
,
A. E.
,
Chiacchiarini
,
H. G.
,
Solsona
,
J. A.
, and
Busada
,
C. A.
,
2007
, “
Nonlinear Control Strategies of a Flywheel Driven by a Synchronous Homopolar Machine
,”
IEEE International Symposium on Industrial Electronics
, Vigo, Spain, pp.
227
232
.
44.
Ping
,
Z.
,
Li
,
Y.
,
Song
,
Y.
,
Huang
,
Y.
,
Wang
,
H.
, and
Lu
,
J.-G.
,
2021
, “
Nonlinear Speed Tracking Control of PMSM Servo System: A Global Robust Output Regulation Approach
,”
Control Eng. Pract.
,
112
, p.
104832
.10.1016/j.conengprac.2021.104832
45.
Xueping
,
X.
, and
Qinkai
,
H.
,
2021
, “
A General Electromagnetic Model and Vibration Control for Shape Deviations in PMSM Supported by Three-Pole Active Magnetic Bearings
,”
Mech. Syst. Signal Process.
,
158
, p.
107710
.10.1016/j.ymssp.2021.107710
46.
Xiang
,
B.
, and
Wong
,
W.
,
2019
, “
Vibration Characteristics Analysis of Magnetically Suspended Rotor in Flywheel Energy Storage System
,”
J. Sound Vib.
,
444
, pp.
235
247
.10.1016/j.jsv.2018.12.037
47.
Eissa
,
M. H.
,
Hegazy
,
U. H.
, and
Amer
,
Y. A.
,
2008
, “
Dynamic Behavior of an AMB Supported Rotor Subjected to Harmonic Excitation
,”
Appl. Math. Modell.
,
32
(
7
), pp.
1370
1380
.10.1016/j.apm.2007.04.005
48.
Feng
,
J.
,
2018
, “
Study on Key Technologies of Magnetically Suspended Control Moment Gyro
,” Ph.D. dissertation,
National University of Defense Technology
,
Hunan, China
.
49.
Chen
,
X.
,
2011
, “
Study on Vibration Analysis and Vibration Suppression Control of Magnetic Suspended Flywheel System
,” Ph.D. dissertation,
National University of Defense Technology
,
Hunan, China
.
50.
Hou
,
E. Y.
,
2013
, “
Structure Design and Dynamics Analysis of Magnetically Suspended Control Moment Gyroscope
,” Ph.D. dissertation,
National University of Defense Technology
,
Hunan, China
.
51.
Wu
,
G.
,
2006
, “
Study on System Design and Control Methods of Hybrid Magnetic Bearing Momentum Flywheel
,” Ph.D. dissertation,
National University of Defense Technology
,
Hunan, China
.
52.
Chiba
,
A.
,
2005
, “
2 - Electro-Magnetics and Mathematical Model of Magnetic Bearings
,”
Magnetic Bearings and Bearingless Drives
,
C.
Akira
,
F.
Tadashi
,
I.
Osamu
,
O.
Masahide
,
T.
Masatsugu
, and
G. D.
David
, eds.,
Newnes
,
Oxford, UK
, pp.
16
44
.
53.
Schweitzer
,
G.
, and
Maslen
,
E. H.
,
2009
,
Magnetic Bearings: Theory, Design, and Application to Rotating Machinery
,
Springer
,
Berlin
, p.
61
.
54.
Yu
,
L.
,
2003
,
Controllable Magnetic Suspension Rotor System
,
Science Press
,
Beijing
, p.
34
.
55.
Hornik
,
K.
,
1991
, “
Approximation Capabilities of Multilayer Feedforward Networks
,”
Neural Networks
,
4
(
2
), pp.
251
257
.10.1016/0893-6080(91)90009-T
56.
Chen
,
L. L.
,
2017
, “
Rotor Strength Analysis of Permanent Magnet Machine and Vibration Control of Rotor in Magnetic Suspended High-Speed Flywheel
,” Ph.D. dissertation,
Zhejiang University
,
Zhejiang, China
.
57.
Haiting
,
H.
,
Yibing
,
L.
,
Liming
,
B.
,
Chuandi
,
Z.
, and
Wei
,
T.
,
2021
, “
Nonlinear Dynamic Model of Active Magnetic Bearing in Flywheel System Based on BP Neural Network
,”
Proc. CSEE
,
42
(
3
), pp.
1184
1198
.10.13334/j.0258-8013.pcsee.202592
58.
Haykin
,
S.
,
2009
,
Neural Networks and Learning Machines
, 3rd ed.,
Pearson Education
,
London
, pp.
97
106
.
59.
Abbaszadeh
,
K.
,
Rezaee
,
A. F.
, and
Saied
,
S. A.
,
2011
, “
Cogging Torque Optimization in Surface-Mounted Permanent-Magnet Motors by Using Design of Experiment
,”
Energy Convers. Manage.
,
52
(
10
), pp.
3075
3082
.10.1016/j.enconman.2011.04.009
60.
Öztürk
,
N.
,
Adem
,
D.
,
Emre
,
Ç.
, and
Selçuk
,
S.
,
2017
, “
Cogging Torque Reduction by Optimal Design of PM Synchronous Generator for Wind Turbines
,”
Int. J. Hydrogen Energy
,
42
(
28
), pp.
17593
600
.10.1016/j.ijhydene.2017.02.093
61.
Ilka
,
R.
,
Yousef
,
A.
, and
Hamid
,
Y.
,
2018
, “
Cogging Torque Reduction of Permanent Magnet Synchronous Motor Using Multi-Objective Optimization
,”
Math. Comput. Simul.
,
153
, pp.
83
95
.10.1016/j.matcom.2018.05.018
62.
Gao
,
J.
,
2013
, “
Research on Design Technology and Application of Direct-Drive Permanent Magnet Generator With Wind Turbine
,” Ph.D. dissertation,
Hunan University
,
Hunan, China
.
63.
Hailong
,
G.
,
2011
, “
Research on Magnetic System of High Torque Permanent in-Wheel Motor
,” Ph.D. dissertation,
Harbin Institute of Technology
,
Heilongjiang, China
.
You do not currently have access to this content.