Abstract

Due to increasing demand of lightweight shafts from industries, the drive systems are crucially demanded for larger inertias of motors and load machines because of control structures for the electrical equipment. The mathematical modeling of two-mass torsional vibration system consisting of motor and roller has been proposed via newly presented fractal–fractional differential operators. The dynamical model of the electromechanical coupling main drive system of rolling mill is based on total kinetic energy and potential energy on the basis of two degree-of-freedom. The fractal and fractional evolutionary differential equation containing nonlinearity have been investigated for the derivation of numerical schemes. Three types of numerical schemes say Caputo differential scheme, Caputo–Fabrizio differential scheme, and Atangana–Baleanu differential scheme have been established through Adams–Bashforth–Moulton method. In order to check the stability and effectiveness, we presented the chaotic comparison of Caputo fractal– fractional operator, Caputo–Fabrizio fractal–fractional operator, and Atangana fractal–fractional operator on the basis of dynamical embedded parameters (vibration angle, rotational speed, stiffness coefficient, load friction damping torque, and few others). Our results suggest that fractal–fractionalized model for electromechanical drive system of rolling mill has better attenuation performance and tracking behaviors in comparison with classical models.

References

1.
OkabeKudo
,
A. T.
,
2010
, “
Rotor-Blade Coupled Vibration Torsional Vibration Analysis and Experiments
,”
ASME
Paper No. GT2010–37037.
2.
Wang
,
Z.
, and
Wang
,
D.
,
2000
, “
Dynamic Characteristics of a Rolling Mill Drive System With Backlash in Rolling Slippage
,”
J. Mater. Process. Technol.
,
97
(
1–3
), pp.
69
73
.10.1016/S0924-0136(99)00329-5
3.
Agrawal, O. P.
,
2002
, “
Formulation of Euler-Lagrange Equations for Fractional Variational Problems
,”
J. Math. Anal. Appl.
,
272
(
1
), pp.
368
372
.10.1016/S0022-247X(02)00180-4
4.
Amer
,
Y. A.
,
El-Sayed
,
A. T.
, and
El-Bahrawy
,
F. T.
,
2015
, “
Torsional Vibration Reduction for Rolling Mill's Main Drive System Via Negative Velocity Feedback Under Parametric Excitation
,”
J. Mech. Sci. Technol.
,
29
(
4
), pp.
1581
1589
.10.1007/s12206-015-0330-8
5.
El-Bassiouny
,
A. F.
,
2006
, “
Vibration and Chaos Control of Non-Linear Torsional Vibrating Systems
,”
Phys. A
,
366
, pp.
167
186
.10.1016/j.physa.2005.10.049
6.
Shi
,
P. M.
,
Liu
,
B.
, and
Hou
,
D. X.
,
2009
, “
Global Dynamic Characteristic of Nonlinear Torsional Vibration System Under Harmonically Excitation
,”
Chin. J. Mech. Eng.
,
22
(
1
), pp.
132
139
.10.3901/CJME.2009.01.132
7.
Liu
,
S.
,
Zhang
,
Y.
, and
Liu
,
B.
,
2010
, “
Dynamical Bifurcation Study on Electromechanical Coupling Vibrationin Rolling Mill's Drive System
,”
J. Mech. Eng.
,
46
(
3
), pp.
83
89
.10.3233/JAE-150083
8.
Zhiqiang
,
S.
,
Yunhe
,
L.
,
Pengcheng
,
G.
, and
Jianjun
,
F.
,
2018
, “
Torsional Vibration Analysis of Hydro-Generator Set Considered Electromagnetic and Hydraulic Vibration Resources Coupling
,”
Int. J. Precis. Eng. Manuf.
,
19
(
7
), pp.
939
945
.10.1007/s12541-018-0111-2
9.
Yi
,
Y.
,
Qin
,
D.
, and
Liu
,
C.
,
2018
, “
Investigation of Electromechanical Coupling Vibration Characteristics of an Electric Drive Multistage Gear System
,”
Mech. Mach. Theory
,
121
, pp.
446
459
.10.1016/j.mechmachtheory.2017.11.011
10.
Podlubny
,
I.
,
1998
,
Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
, Vol.
198
,
Elsevier
,
New York
.
11.
Awan
,
A. U.
,
Riaz
,
S.
,
Sattar
,
S.
, and
Kashif
,
A. A.
,
2020
, “
Fractional Modeling and Synchronization of Ferrouid on Free Convection Flow With Magnetolysis
,”
Eur. Phys. J. Plus
,
135
, pp.
841
855
.10.1140/epjp/s13360-020-00852-4
12.
Caputo
,
M.
, and
Fabrizio
,
M.
,
2015
, “
A New Definition of Fractional Derivative Without Singular Kernel
,”
Prog. Fract. Differ. Appl.
,
1
, pp.
1
13
.10.12785/pfda/010201
13.
Abro
,
K. A.
,
Soomro
,
M.
,
Atangana
,
A.
, and
Aguilar
,
J. F. G.
,
2020
, “
Thermophysical Properties of Maxwell Nanofluids Via Fractional Derivatives With Regular Kernel
,”
J. Therm. Anal. Calorim., epub
.
14.
Atangana
,
A.
, and
Owolabi
,
K. M.
,
2018
, “
New Numerical Approach for Fractional Differential Equations
,”
Math. Model. Nat. Phenom.
,
13
(
1
), p.
3
.10.1051/mmnp/2018010
15.
Kashif
,
A. A.
,
2020
, “
Fractional Characterization of Fluid and Synergistic Effects of Free Convective Flow in Circular Pipe Through Hankel Transform
,”
Phys. Fluids
,
32
, p.
123102
.10.1063/5.0029386
16.
Ghanbari
,
B.
, and
GómezAguilar
,
J. F.
, October
2020
, “
Two Efficient Numerical Schemes for Simulating Dynamical Systems and Capturing Chaotic Behaviors With Mittag-Leffer Memory
,”
Eng. Comput.
, epub.
17.
Kashif
,
A. A.
, and
Bhagwan
,
D.
,
2020
, “
A Scientific Report of Non-Singular Techniques on Microring Resonators: An Application to Optical Technology
,”
Optik-Int. J. Light Electron Opt.
,
224
, p.
165696
.10.1016/j.ijleo.2020.165696
18.
Asıf
,
Y.
,
Hülya
,
D.
,
Kashif
,
A. A.
, and
Dogan
,
K.
,
2020
, “
Role of Gilson–Pickering Equation for the Different Types of Soliton Solutions: A Nonlinear Analysis
,”
Eur. Phys. J. Plus
,
135
, p.
657
.10.1140/epjp/s13360-020-00646-8
19.
Atangana
,
A.
, and
Emile
,
F. D. G.
,
2020
, “
Cauchy Problems With Fractal-Fractional Operators and Applications to Ground Water Dynamics
,”
Fractals
,
28
(
8
), p.
20400435
.10.1142/S0218348X20400435
20.
Aziz
,
U. A.
,
Muhammad
,
T.
, and
Abro
,
K. A.
,
2021
, “
Multiple Soliton Solutions With Chiral Nonlinear Schrödinger's Equation in (2 + 1)-Dimensions
,”
Eur. J. Mech. B/Fluids
,
85
, pp.
68
75
.10.1016/j.euromechflu.2020.07.014
21.
Muhammad
,
O.
,
Takasar
,
H.
,
Mureed
,
H.
,
Aziz
,
U. A.
,
Dumitru
,
B.
, and
Kashif
,
A. A.
,
2020
, “
A Mathematical and Statistical Estimation of Potential Transmission and Severity of COVID-19: A Combined Study of Romania and Pakistan
,”
BioMed Res. Int.
22.
Saad
,
K.
,
Gómez-Aguilar
,
J. F.
, and
Manal
,
A.
,
2020
, “
Fractal-Fractional Study of the Hepatitis C Virus Infection Model
,”
Results Phys.
,
19
, p.
103555
.10.1016/j.rinp.2020.103555
23.
Abro
,
K. A.
,
Imran
,
Q. M.
, and
Ambreen
,
S.
,
2020
, “
Thermal Transmittance and Thermo-Magnetization of Unsteady Free Convection Viscous Fluid Through Non-Singular Differentiations
,”
Phys. Scr.
,
96
(
1
), p.
015215
.10.1088/1402-4896/abc981
24.
Jordan
,
H.
,
2020
, “
Non-Linear Heat Conduction With Ramped Surface Heating Ramp Surface Heating and Approximate Solution
,”
Therm. Sci.
,
24
, pp.
377
389
.10.2298/TSCI20S1377H
25.
Kashif
,
A. A.
,
Ambreen
,
S.
,
Basma
,
S.
, and
Abdon
,
A.
,
2020
, “
Application of Statistical Method on Thermal Resistance and Conductance During Magnetization of Fractionalized Free Convection Flow
,”
Int. Commun. Heat Mass Transfer
,
119
, p.
104971
.10.1016/j.icheatmasstransfer.2020.104971
26.
Abdon
,
A.
,
Gomez-Aguilar
,
J. F.
, and
Jordon
,
H.
,
2020
, “
Preface on New Tends of Numerical and Analytical Methods
,”
Discrete Contin. Dyn. Syst. Ser. S
,
13
(
3
).
27.
Qasim
,
A.
,
Samia
,
R.
,
Aziz
,
U. A.
, and
Abro
,
K. A.
,
2020
, “
Thermal Investigation for Electrified Convection Flow of Newtonian Fluid Subjected to Damped Thermal Flux on a Permeable Medium
,”
Phys. Scr.
,
95
(
11
), p.
115003
.10.1088/1402-4896/abbc2e
28.
Kashif
,
A. A.
,
2021
, “
Role of Fractal-Fractional Derivative on Ferromagnetic Fluid Via Fractal Laplace Transform: A First Problem Via Fractal–Fractional Differential Operator
,”
Eur. J. Mech./B Fluids
,
85
, pp.
76
81
.10.1016/j.euromechflu.2020.09.002
29.
Muneerah
,
A. N.
, and
Basma
,
S.
,
2020
, “
Blasius-Rayleigh-Stokes Flow Over a Semi-Infinite Plate by Considering Carbon Nanotubes
,”
Microsyst. Technol.
, 27, pp.
2001
2008
.
30.
Bhojraj
,
L.
,
Abro
,
K. A.
, and
Abdul
,
W. S.
,
2021
, “
Thermodynamical Analysis of Heat Transfer of Gravity Driven Fluid Flow Via Fractional Treatment: An Analytical Study
,”
J. Therm. Anal. Calorim.
,
144
(
1
), pp.
155
165
.10.1007/s10973-020-09429-w
31.
Ghalib
,
M. M.
,
Zafar
,
A. A.
,
Hammouch
,
Z.
,
Riaz
,
M. B.
, and
Shabbir
,
K.
,
2020
, “
Analytical Results on the Unsteady Rotational Flow of Fractional-Order non-Newtonian Fluids With Shear Stress on the Boundary
,”
Discrete Contin. Dyn. Syst. S
,
13
(
3
), pp.
683
693
.10.3934/dcdss.2020037
32.
Abro
,
K. A.
, and
Atangana
,
A.
, A Comparative Study of Convective Fluid Motion in Rotating Cavity Via Atangana–Baleanu and Caputo-Fabrizio Fractal–Fractional Differentiations,”
Eur. Phys. J. Plus
,
135
(
2
), pp.
226
242
.10.1140/epjp/s13360-020-00136-x
33.
Abro
,
K. A.
,
Ambreen
,
S.
, and
Abdon
,
A.
,
2021
, “
Thermal Stratification of Rotational Second-Grade Fluid Through Fractional Differential Operators
,”
J. Therm. Anal. Calorim.
,
143
(
5
), pp.
3667
3676
.10.1007/s10973-020-09312-8
34.
Liu
,
J.-G.
,
Yang
,
X.-J.
,
Feng
,
Y.-Y.
,
Cui
,
P.
, and
Geng
,
L.-L.
,
2021
, “
On Integrability of the Higher Dimensional Time Fractional KdV-Type Equation
,”
J. Geom. Phys.
,
160
, p.
104000
.10.1016/j.geomphys.2020.104000
35.
Kashif
,
A. A.
, and
Abdon
,
A.
,
2020
, “
Numerical and Mathematical analysis of induction Motor by Means of AB–Fractal–Fractional Differentiation Actuated by Drilling System
,”
Numer. Methods Partial Differ. Equations
, pp.
1
15
.
36.
Srivastava
,
H. M.
, and
Saad
,
K. M.
,
2020
, “
Some New and Modified Fractional Analysis of the Time-Fractional Drinfeld Sokolov Wilson System
,”
AIP Choas
,
30
(
11
), p.
113104
.10.1063/5.0009646
37.
Kashif
,
A. A.
, and
Abdon
,
A.
,
2020
, “
Numerical Study and Chaotic Analysis of Meminductor and Memcapacitor Through Fractal-Fractional Differential Operator
,”
Arabian J. Sci. Eng.
, 46, pp.
857
871
.
38.
Abro
,
K. A.
, and
Atangana
,
A.
,
2020
, “
A Comparative Analysis of Electromechanical Model of Piezoelectric Actuator Through Caputo–Fabrizio and Atangana–Baleanu Fractional Derivatives
,”
Math. Methods Appl. Sci.
,
43
(
17
), p.
9681
.10.1002/mma.6638
39.
Srivastava
,
H. M.
, and
Saad
,
K. M.
,
2020
, “
A Comparative Study of the Fractional-Order Clock Chemical Model
,”
Mathematics
,
8
(
9
), p.
1436
.10.3390/math8091436
40.
Kashif
,
A. A.
, and
Abdon
,
A.
,
2020
, “
Mathematical Analysis of Memristor Through Fractal-Fractional Differential Operators: A Numerical Study
,”
Math. Methods Appl. Sci.
, 43, pp.
1
18
.
41.
Abro
,
K. A.
,
Khan
,
I.
, and
Gómez-Aguilar
,
J. F.
,
2021
, “
Heat Transfer in Magnetohydrodynamic Free Convection Flow of Generalized Ferrofluid With Magnetite Nanoparticles
,”
J. Therm. Anal. Calorim.
,
143
(
5
), pp.
3633
3642
.10.1007/s10973-019-08992-1
42.
Kashif
,
A. A.
, and
Abdon
,
A.
,
2020
, “
Porous Effects on the Fractional Modeling of Magnetohydrodynamic Pulsatile Flow: An Analytic Study Via Strong Kernels
,”
J. Therm. Anal. Calorim.
, 46, pp.
689
698
.
43.
Kumar
,
S.
,
Ghosh
,
S.
,
Samet
,
B.
, and
Goufo
,
E. F. D.
,
2020
, “
An Analysis for Heat Equations Arises in Diffusion Process Using New Yang-Abdel-Aty-Cattani Fractional Operator
,”
Math. Methods Appl. Sci.
,
43
(
9
), pp.
6062
6080
.10.1002/mma.6347
44.
Abro
,
K. A.
, and
Abdon
,
A.
,
2020
, “
Dual Fractional Modeling of Rate Type Fluid Through Non-Local Differentiation
,”
Numer. Methods Partial Differ. Eq.
, pp.
1
16
.
45.
Kashif
,
A. A.
, and
Gomez-Aguilar
,
J. F.
,
2020
, “
Role of Fourier Sine Transform on the Dynamical Model of Tensioned Carbon Nanotubes With Fractional Operator
,”
Math. Methods Appl. Sci.
, pp.
1
11
.
46.
Amanulla
,
C.
,
Wakif
,
A.
, and
Saleem
,
D. S.
,
2020
, “
Numerical Study of a Williamson Fluid Past a Semi-Infinite Vertical Plate With Convective Heating and Radiation Effects
,”
Diffus. Found.
,
28
, pp.
1
15
.10.4028/www.scientific.net/DF.28.1
47.
Abro
,
K. A.
, and
Abdon
,
A.
,
2020
, “
Role of Non-Integer and Integer Order Differentiations on the Relaxation Phenomena of Viscoelastic Fluid
,”
Phys. Scr.
,
95
(
3
), p.
035228
.10.1088/1402-4896/ab560c
48.
Atangana
,
A.
, and
Araz
,
S. I.-G.
,
2020
, “
Mathematical Model of COVID-19 Spread in Turkey and South Africa
,”
Adv. Differ. Eq.
,
2020
(
1
), epub.10.1101/2020.05.08.20095588
49.
Kashif
,
A. A.
,
2020
, “
A Fractional and Analytic Investigation of Thermo-Diffusion Process on Free Convection Flow: An Application to Surface Modification Technology
,”
Eur. Phys. J. Plus
,
135
(
1
), pp.
31
45
.10.1140/epjp/s13360-019-00046-7
50.
Owolabi
,
K.
, and
Karaagac
,
B.
,
2020
, “
Chaotic and Spatiotemporal Oscillations in Fractional Reaction-Diffusion System
,”
Chaos Solitons Fractals
,
141
, p.
110302
.10.1016/j.chaos.2020.110302
51.
Feng
,
Y.-Y.
,
Xiao-Jun
,
Y.
,
Liu
,
J.-G.
, and
Chen
,
Z.-Q.
,
2021
, “
A New Fractional Nishihara-Type Model With Creep Damage Considering Thermal Effect
,”
Eng. Fract. Mech.
,
242
, p.
107451
.10.1016/j.engfracmech.2020.107451
52.
Atangana
,
A.
, and
Araz
,
S. I.-G.
,
2020
, “
New Numerical Approximation for Chua Attractor With Fractional and Fractal-Fractional Operators
,”
Alexandria Eng. J.
,
59
(
5
), pp.
3275
3296
.10.1016/j.aej.2020.01.004
53.
Aliyu
,
A. I.
,
Inc
,
M.
,
Yusuf
,
A.
, and
Baleanu
,
D.
,
2018
, “
A Fractional Model of Vertical Transmission and Cure of Vector-Borne Diseases Pertaining to the Atangana–Baleanu Fractional Derivatives
,”
Chaos Solitons Fractals
,
116
, pp.
268
277
.10.1016/j.chaos.2018.09.043
54.
Saad
,
K. M.
,
Khader
,
M. M.
,
Gómez-Aguilar
,
J. F.
, and
Baleanu
,
D.
,
2019
, “
Numerical Solutions of the Fractional Fisher's Type Equations With Atangana-Baleanu Fractional Derivative by Using Spectral Collocation Methods. Chaos Interdiscip
,”
J. Nonlinear Sci.
,
29
, p.
023116
.10.1063/1.5086771
55.
Atangana
,
A.
,
2017
, “
Fractal-Fractional Differentiation and Integration: Connecting Fractal Calculus and Fractional Calculus to Predict Complex System
,”
Chaos Solitons Fractals
,
102
, pp.
396
406
.10.1016/j.chaos.2017.04.027
56.
Lavín-Delgado
,
J. E.
,
Solís-Pérez
,
J. E.
,
Gómez-Aguilar
,
J. F.
, and
Escobar-Jiménez
,
R. F.
,
2020
, “
Trajectory Tracking Control Based on Non-Singular Fractional Derivatives for the PUMA 560 Robot Arm
,”
Multibody Syst. Dyn.
,
50
(
3
), pp.
259
303
.10.1007/s11044-020-09752-y
57.
Aziz
,
U. A.
,
Attia
,
S.
,
Kashif
,
A. A.
,
Muhammad
,
O.
, and
Takasar
,
H.
,
2021
, “
Dynamical Aspects of Smoking Model With Cravings to Smoke
,”
Nonlinear Eng
.
58.
Lavín-Delgado
,
J. E.
,
Chávez-Vázquez
,
S.
,
Gómez-Aguilar
,
J. F.
,
Delgado-Reyes
,
G.
, and
Ruíz-Jaimes
,
M. A.
,
2020
, “
Fractional-Order Passivity-Based Adaptive Controller for a Robot Manipulator Type Scara
,”
Fractals
,
28
(
8
), p.
20400083
.10.1142/s0218348x20400083
59.
Aziz
,
U. A.
,
Mashal
,
A.
,
Naeem
,
U.
,
Sohail
,
N.
, and
Abro
,
K. A.
,
2021
, “
Thermal Analysis of Oblique Stagnation Point Low With Slippage on Second-Order Fluid
,”
J. Therm. Anal. Calorim.
60.
Coronel-Escamilla
,
A.
,
Torres
,
F.
,
Gómez-Aguilar
,
J. F.
,
Escobar-Jiménez
,
R. F.
, and
Guerrero-Ramírez
,
G. V.
,
2018
, “
On the Trajectory Tracking Control for an SCARA Robot manipulator in a Fractional Model Driven by Induction motors With PSO Tuning
,”
Multibody Syst. Dyn.
,
43
(
3
), pp.
257
277
.10.1007/s11044-017-9586-3
61.
Asıf
,
Y.
,
Hülya
,
D.
, and
Abro
,
K. A.
,
2021
, “
Symbolic Computation of Caudrey–Dodd–Gibbon Equation Subject to Periodic Trigonometric and Hyperbolic Symmetries
,”
Eur. Phys. J. Plus
,
136
(
4
), p.
358
.10.1140/epjp/s13360-021-01350-x
62.
Morales-Delgado
,
V. F.
,
Gómez-Aguilar
,
J. F.
,
Taneco-Hernández
,
M. A.
, and
Escobar-Jiménez
,
R. F.
,
2018
, “
A Novel Fractional Derivative With Variable- and Constant-Order Applied to a Mass-Spring-Damper System
,”
Eur. Phys. J. Plus
,
133
(
2
), p.
78
.10.1140/epjp/i2018-11905-4
63.
Cuahutenango-Barro
,
B.
,
Taneco-Hernández
,
M. A.
, and
Gómez-Aguilar
,
J. F.
,
2017
, “
Application of Fractional Derivative With Exponential Law to bi-Fractional-Order Wave Equation With Frictional Memory Kernel
,”
Eur. Phys. J. Plus
,
132
(
12
), p.
515
.10.1140/epjp/i2017-11796-9
64.
Kashif
,
A. A.
,
Atangana
,
A.
, and
Gomez-Aguilar
,
J. F.
,
2021
, “
Role of Bi-Order Atangana–Aguilar Fractional Differentiation on Drude Model: An Analytic Study for Distinct Sources
,”
Opt. Quantum Electron.
,
53
(
4
), p.
177
.10.1007/s11082-021-02804-3
65.
Gómez-Aguilar
,
J. F.
, and
Atangana
,
A.
,
2017
, “
Fractional Hunter-Saxton Equation Involving Partial Operators With Bi-Order in Riemann-Liouville and Liouville-Caputo Sense
,”
Eur. Phys. J. Plus
,
132
(
2
), p.
100
.10.1140/epjp/i2017-11371-6
66.
Coronel-Escamilla
,
A.
,
Gómez-Aguilar
,
J.
,
Baleanu
,
D.
,
Córdova-Fraga
,
T.
,
Escobar-Jiménez
,
R.
,
Olivares-Peregrino
,
V.
, and
Qurashi
,
M.
,
2017
, “
Bateman–Feshbach Tikochinsky and Caldirola–Kanai Oscillators With New Fractional Differentiation
,”
Entropy
,
19
(
2
), p.
55
.10.3390/e19020055
You do not currently have access to this content.