Abstract
In this study, a fractional-order food chain model with disease and two delays is proposed. The existence conditions for a positive equilibrium point are given, and the stability conditions without the effects of delays are established. The effects of a single time delay and two time delays are discussed, the bifurcation and stability criteria are obtained, and the bifurcation points are calculated. To support the theoretical analysis, numerical simulations are presented.
Issue Section:
Technical Brief
References
1.
Kermack
,
W. O.
, and
McKendrick
,
A. G.
, 1927
, “
A Contribution to the Mathematical Theory of Epidemics
,” Proc. R. Soc. London, Ser. A
,
115
(772
), pp. 700
–721
.10.1098/rspa.1927.01182.
Wang
,
W.
, and
Ruan
,
S.
, 2004
, “
Bifurcations in an Epidemic Model With Constant Removal Rate of the Infectives
,” J. Math. Anal. Appl.
,
291
(2
), pp. 775
–793
.10.1016/j.jmaa.2003.11.0433.
Wang
,
X.
,
Wang
,
Z.
, and
Shen
,
H.
, 2019
, “
Dynamical Analysis of a Discrete-Time SIS Epidemic Model on Complex Networks
,” Appl. Math. Lett.
,
94
, pp. 292
–299
.10.1016/j.aml.2019.03.0114.
Zhou
,
S.
,
Liu
,
Y.
, and
Wang
,
G.
, 2005
, “
The Stability of Predator–Prey Systems Subject to the Allee Effects
,” Theor. Popul. Biol.
,
67
(1
), pp. 23
–31
.10.1016/j.tpb.2004.06.0075.
Chattopadhyay
,
J.
, and
Arino
,
O.
, 1999
, “
A Predator-Prey Model With Disease in the Prey
,” Nonlinear Anal.
,
36
(6
), pp. 747
–766
.10.1016/S0362-546X(98)00126-66.
Sun
,
C.
,
Lin
,
Y.
, and
Han
,
M.
, 2006
, “
Stability and Hopf Bifurcation for an Epidemic Disease Model With Delay
,” Chaos, Solitons Fractals
,
30
(1
), pp. 204
–216
.10.1016/j.chaos.2005.08.1677.
Zhang
,
J.
,
Li
,
W.
, and
Yan
,
X.
, 2008
, “
Hopf Bifurcation and Stability of Periodic Solutions in a Delayed Eco-Epidemiological System
,” Appl. Math. Comput.
,
198
(2
), pp. 865
–876
. 10.1016/j.amc.2007.09.0458.
Hu
,
G.
, and
Li
,
X.
, 2012
, “
Stability and Hopf Bifurcation for a Delayed Predator–Prey Model With Disease in the Prey
,” Chaos, Solitons Fractals
,
45
(3
), pp. 229
–237
.10.1016/j.chaos.2011.11.0119.
Xu
,
R.
, and
Ma
,
Z.
, 2009
, “
Global Stability of a SIR Epidemic Model With Nonlinear Incidence Rate and Time Delay
,” Nonlinear Anal.: Real World Appl.
,
10
(5
), pp. 3175
–3189
.10.1016/j.nonrwa.2008.10.01310.
McCluskey
,
C. C.
, 2010
, “
Complete Global Stability for an SIR Epidemic Model With Delay-Distributed or Discrete
,” Nonlinear Anal.: Real World Appl.
,
11
(1
), pp. 55
–59
.10.1016/j.nonrwa.2008.10.01411.
Laskin
,
N.
, 2002
, “
Fractional Schrödinger Equation
,” Phys. Rev. E
,
66
(5
), p. 056108
.10.1103/PhysRevE.66.05610812.
Wei
,
Y.
,
Yin
,
W.
,
Zhao
,
Y.
, and
Wang
,
Y.
, 2019
, “
A New Insight Into the Grünwald–Letnikov Discrete Fractional Calculus
,” ASME J. Comput. Nonlinear Dyn.
,
14
(4
), p. 041008
.10.1115/1.404263513.
Jia
,
J.
,
Huang
,
X.
,
Li
,
Y.
,
Cao
,
J.
, and
Alsaedi
,
A.
, 2019
, “
Global Stabilization of Fractional-Order Memristor-Based Neural Networks With Time Delay
,” IEEE Trans. Neural Networks Learning Syst.
, epub. 10.1109/TNNLS.2019.291535314.
Wang
,
Z.
,
Wang
,
X.
,
Xia
,
J.
,
Shen
,
H.
, and
Bo
,
M.
, 2019
, “
Adaptive Sliding Mode Output Tracking Control based-FODOB for a Class of Uncertain Fractional-Order Nonlinear Time-Delayed Systems
,” Sci China Technol. Sci
., epub. 10.1007/s11431-019-1476-415.
Wang
,
X.
,
Wang
,
Z.
, and
Xia
,
J.
, 2019
, “
Stability and Bifurcation Control of a Delayed Fractional-Order Eco-Epidemiological Model With Incommensurate Orders
,” J. Franklin Inst.
,
356
(15
), pp. 8278
–8295
.10.1016/j.jfranklin.2019.07.02816.
Tang
,
Y.
, and
Fang
,
J.
, 2010
, “
Synchronization of n-Coupled Fractional-Order Chaotic Systems With Ring Connection
,” Commun. Nonlinear Sci. Numer. Simul.
,
15
(2
), pp. 401
–412
.10.1016/j.cnsns.2009.03.02417.
Zhou
,
S.
,
Lin
,
X.
, and
Li
,
H.
, 2011
, “
Chaotic Synchronization of a Fractional-Order System Based on Washout Filter Control
,” Commun. Nonlinear Sci. Numer. Simul.
,
16
(3
), pp. 1533
–1540
.10.1016/j.cnsns.2010.06.02218.
Fan
,
Y.
,
Huang
,
X.
,
Wang
,
Z.
, and
Li
,
Y.
, 2018
, “
Nonlinear Dynamics and Chaos in a Simplified Memristor-Based Fractional-Order Neural Network With Discontinuous Memductance Function
,” Nonlinear Dyn.
,
93
(2
), pp. 611
–627
.10.1007/s11071-018-4213-219.
Huang
,
X.
,
Fan
,
Y.
,
Jia
,
J.
,
Wang
,
Z.
, and
Li
,
Y.
, 2017
, “
Quasi-Synchronisation of Fractional-Order Memristor-Based Neural Networks With Parameter Mismatches
,” IET Control Theory Appl.
,
11
(14
), pp. 2317
–2327
.10.1049/iet-cta.2017.019620.
Gu
,
Y.
,
Wang
,
H.
, and
Yu
,
Y.
, 2019
, “
Synchronization for Incommensurate Riemann–Liouville Fractional-Order Time-Delayed Competitive Neural Networks With Different Time Scales and Known or Unknown Parameters
,” ASME J. Comput. Nonlinear Dyn.
,
14
(5
), p. 051002
.10.1115/1.404249421.
Sambit
,
D.
, and
Anindya
,
C.
, 2013
, “
Numerical Stability Analysis of Linear Incommensurate Fractional Order Systems
,” ASME J. Comput. Nonlinear Dyn.
,
8
(4
), p. 041012
. 10.1115/1.402396622.
Ghaziani
,
R. K.
,
Alidousti
,
J.
, and
Eshkaftaki
,
A. B.
, 2016
, “
Stability and Dynamics of a Fractional Order Leslie–Gower Prey–Predator Model
,” Appl. Math. Modell.
,
40
(3
), pp. 2075
–2086
.10.1016/j.apm.2015.09.01423.
Wang
,
Z.
,
Xie
,
Y.
,
Lu
,
J.
, and
Li
,
Y.
, 2019
, “
Stability and Bifurcation of a Delayed Generalized Fractional–Order Prey–Predator Model With Interspecific Competition
,” Appl. Math. Comput.
,
347
, pp. 360
–369
.10.1016/j.amc.2018.11.01624.
Ahmed
,
E.
, and
Elgazzar
,
A.
, 2007
, “
On Fractional Order Differential Equations Model for Nonlocal Epidemics
,” Phys. A
,
379
(2
), pp. 607
–614
.10.1016/j.physa.2007.01.01025.
Huo
,
J.
,
Zhao
,
H.
, and
Zhu
,
L.
, 2015
, “
The Effect of Vaccines on Backward Bifurcation in a Fractional Order HIV Model
,” Nonlinear Anal.: Real World Appl.
,
26
, pp. 289
–305
.10.1016/j.nonrwa.2015.05.01426.
Yan
,
Y.
, and
Kou
,
C.
, 2012
, “
Stability Analysis for a Fractional Differential Model of HIV Infection of
T-Cells With Time Delay
,” Math. Comput. Simul.
,
82
(9
), pp. 1572
–1585
.10.1016/j.matcom.2012.01.00427.
Huang
,
C.
,
Cao
,
J.
,
Xiao
,
M.
,
Alsaedi
,
A.
, and
Alsaadi
,
F. E.
, 2017
, “
Controlling Bifurcation in a Delayed Fractional Predator–Prey System With Incommensurate Orders
,” Appl. Math. Comput.
,
293
, pp. 293
–310
.10.1016/j.amc.2016.08.03328.
Mondal
,
S.
,
Lahiri
,
A.
, and
Bairagi
,
N.
, 2017
, “
Analysis of a Fractional Order Eco-Epidemiological Model With Prey Infection and Type 2 Functional Response
,” Math. Methods Appl. Sci.
,
40
(18
), pp. 6776
–6789
.10.1002/mma.449029.
Wang
,
Z.
,
Wang
,
X.
,
Li
,
Y.
, and
Huang
,
X.
, 2017
, “
Stability and Hopf Bifurcation of Fractional-Order Complex–Valued Single Neuron Model With Time Delay
,” Int. J. Bifurcation Chaos
,
27
(13
), p. 1750209
.10.1142/S021812741750209130.
Latha
,
V. P.
,
Rihan
,
F. A.
,
Rakkiyappan
,
R.
, and
Velmurugan
,
G.
, 2018
, “
A Fractional-Order Model for Ebola Virus Infection With Delayed Immune Response on Heterogeneous Complex Networks
,” J. Comput. Appl. Math.
,
339
, pp. 134
–146
.10.1016/j.cam.2017.11.03231.
Wang
,
W.
, 2002
, “
Global Behavior of an SEIRS Epidemic Model With Time Delays
,” Appl. Math. Lett.
,
15
(4
), pp. 423
–428
.10.1016/S0893-9659(01)00153-732.
Song
,
X.
,
Hao
,
M.
, and
Meng
,
X.
, 2009
, “
A Stage-Structured Predator–Prey Model With Disturbing Pulse and Time Delays
,” Appl. Math. Modell.
,
33
(1
), pp. 211
–223
.10.1016/j.apm.2007.10.02033.
Podlubny
,
I.
, 1998
, Fractional Differential Equations
, Vol.
198
,
Elsevier
, New York
.34.
Matignon
,
D.
, 1996
, “
Stability Results for Fractional Differential Equations With Applications to Control Processing
,” Comput. Eng. Syst. Appl.
,
2
, pp. 963
–968
. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.4859&rep=rep1&type=pdf35.
Deng
,
W.
,
Li
,
C.
, and
Lü
,
J.
, 2007
, “
Stability Analysis of Linear Fractional Differential System With Multiple Time Delays
,” Nonlinear Dyn.
,
48
(4
), pp. 409
–416
.10.1007/s11071-006-9094-036.
Wang
,
X.
,
Wang
,
Z.
,
Huang
,
X.
, and
Li
,
Y.
, 2018
, “
Dynamic Analysis of a Delayed Fractional-Order SIR Model With Saturated Incidence and Treatment Functions
,” Int. J. Bifurcation Chaos
,
28
(14
), p. 1850180
.10.1142/S021812741850180837.
Huang
,
C.
,
Li
,
Z.
,
Ding
,
D.
, and
Cao
,
J.
, 2018
, “
Bifurcation Analysis in a Delayed Fractional Neural Network Involving Self-Connection
,” Neurocomputing
,
314
, pp. 186
–197
.10.1016/j.neucom.2018.06.016Copyright © 2020 by ASME
You do not currently have access to this content.