Abstract

In this study, a fractional-order food chain model with disease and two delays is proposed. The existence conditions for a positive equilibrium point are given, and the stability conditions without the effects of delays are established. The effects of a single time delay and two time delays are discussed, the bifurcation and stability criteria are obtained, and the bifurcation points are calculated. To support the theoretical analysis, numerical simulations are presented.

References

1.
Kermack
,
W. O.
, and
McKendrick
,
A. G.
,
1927
, “
A Contribution to the Mathematical Theory of Epidemics
,”
Proc. R. Soc. London, Ser. A
,
115
(
772
), pp.
700
721
.10.1098/rspa.1927.0118
2.
Wang
,
W.
, and
Ruan
,
S.
,
2004
, “
Bifurcations in an Epidemic Model With Constant Removal Rate of the Infectives
,”
J. Math. Anal. Appl.
,
291
(
2
), pp.
775
793
.10.1016/j.jmaa.2003.11.043
3.
Wang
,
X.
,
Wang
,
Z.
, and
Shen
,
H.
,
2019
, “
Dynamical Analysis of a Discrete-Time SIS Epidemic Model on Complex Networks
,”
Appl. Math. Lett.
,
94
, pp.
292
299
.10.1016/j.aml.2019.03.011
4.
Zhou
,
S.
,
Liu
,
Y.
, and
Wang
,
G.
,
2005
, “
The Stability of Predator–Prey Systems Subject to the Allee Effects
,”
Theor. Popul. Biol.
,
67
(
1
), pp.
23
31
.10.1016/j.tpb.2004.06.007
5.
Chattopadhyay
,
J.
, and
Arino
,
O.
,
1999
, “
A Predator-Prey Model With Disease in the Prey
,”
Nonlinear Anal.
,
36
(
6
), pp.
747
766
.10.1016/S0362-546X(98)00126-6
6.
Sun
,
C.
,
Lin
,
Y.
, and
Han
,
M.
,
2006
, “
Stability and Hopf Bifurcation for an Epidemic Disease Model With Delay
,”
Chaos, Solitons Fractals
,
30
(
1
), pp.
204
216
.10.1016/j.chaos.2005.08.167
7.
Zhang
,
J.
,
Li
,
W.
, and
Yan
,
X.
,
2008
, “
Hopf Bifurcation and Stability of Periodic Solutions in a Delayed Eco-Epidemiological System
,”
Appl. Math. Comput.
,
198
(
2
), pp.
865
876
. 10.1016/j.amc.2007.09.045
8.
Hu
,
G.
, and
Li
,
X.
,
2012
, “
Stability and Hopf Bifurcation for a Delayed Predator–Prey Model With Disease in the Prey
,”
Chaos, Solitons Fractals
,
45
(
3
), pp.
229
237
.10.1016/j.chaos.2011.11.011
9.
Xu
,
R.
, and
Ma
,
Z.
,
2009
, “
Global Stability of a SIR Epidemic Model With Nonlinear Incidence Rate and Time Delay
,”
Nonlinear Anal.: Real World Appl.
,
10
(
5
), pp.
3175
3189
.10.1016/j.nonrwa.2008.10.013
10.
McCluskey
,
C. C.
,
2010
, “
Complete Global Stability for an SIR Epidemic Model With Delay-Distributed or Discrete
,”
Nonlinear Anal.: Real World Appl.
,
11
(
1
), pp.
55
59
.10.1016/j.nonrwa.2008.10.014
11.
Laskin
,
N.
,
2002
, “
Fractional Schrödinger Equation
,”
Phys. Rev. E
,
66
(
5
), p.
056108
.10.1103/PhysRevE.66.056108
12.
Wei
,
Y.
,
Yin
,
W.
,
Zhao
,
Y.
, and
Wang
,
Y.
,
2019
, “
A New Insight Into the Grünwald–Letnikov Discrete Fractional Calculus
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
4
), p.
041008
.10.1115/1.4042635
13.
Jia
,
J.
,
Huang
,
X.
,
Li
,
Y.
,
Cao
,
J.
, and
Alsaedi
,
A.
,
2019
, “
Global Stabilization of Fractional-Order Memristor-Based Neural Networks With Time Delay
,”
IEEE Trans. Neural Networks Learning Syst.
, epub. 10.1109/TNNLS.2019.2915353
14.
Wang
,
Z.
,
Wang
,
X.
,
Xia
,
J.
,
Shen
,
H.
, and
Bo
,
M.
,
2019
, “
Adaptive Sliding Mode Output Tracking Control based-FODOB for a Class of Uncertain Fractional-Order Nonlinear Time-Delayed Systems
,”
Sci China Technol. Sci
., epub. 10.1007/s11431-019-1476-4
15.
Wang
,
X.
,
Wang
,
Z.
, and
Xia
,
J.
,
2019
, “
Stability and Bifurcation Control of a Delayed Fractional-Order Eco-Epidemiological Model With Incommensurate Orders
,”
J. Franklin Inst.
,
356
(
15
), pp.
8278
8295
.10.1016/j.jfranklin.2019.07.028
16.
Tang
,
Y.
, and
Fang
,
J.
,
2010
, “
Synchronization of n-Coupled Fractional-Order Chaotic Systems With Ring Connection
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
2
), pp.
401
412
.10.1016/j.cnsns.2009.03.024
17.
Zhou
,
S.
,
Lin
,
X.
, and
Li
,
H.
,
2011
, “
Chaotic Synchronization of a Fractional-Order System Based on Washout Filter Control
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
3
), pp.
1533
1540
.10.1016/j.cnsns.2010.06.022
18.
Fan
,
Y.
,
Huang
,
X.
,
Wang
,
Z.
, and
Li
,
Y.
,
2018
, “
Nonlinear Dynamics and Chaos in a Simplified Memristor-Based Fractional-Order Neural Network With Discontinuous Memductance Function
,”
Nonlinear Dyn.
,
93
(
2
), pp.
611
627
.10.1007/s11071-018-4213-2
19.
Huang
,
X.
,
Fan
,
Y.
,
Jia
,
J.
,
Wang
,
Z.
, and
Li
,
Y.
,
2017
, “
Quasi-Synchronisation of Fractional-Order Memristor-Based Neural Networks With Parameter Mismatches
,”
IET Control Theory Appl.
,
11
(
14
), pp.
2317
2327
.10.1049/iet-cta.2017.0196
20.
Gu
,
Y.
,
Wang
,
H.
, and
Yu
,
Y.
,
2019
, “
Synchronization for Incommensurate Riemann–Liouville Fractional-Order Time-Delayed Competitive Neural Networks With Different Time Scales and Known or Unknown Parameters
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
5
), p.
051002
.10.1115/1.4042494
21.
Sambit
,
D.
, and
Anindya
,
C.
,
2013
, “
Numerical Stability Analysis of Linear Incommensurate Fractional Order Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
4
), p.
041012
. 10.1115/1.4023966
22.
Ghaziani
,
R. K.
,
Alidousti
,
J.
, and
Eshkaftaki
,
A. B.
,
2016
, “
Stability and Dynamics of a Fractional Order Leslie–Gower Prey–Predator Model
,”
Appl. Math. Modell.
,
40
(
3
), pp.
2075
2086
.10.1016/j.apm.2015.09.014
23.
Wang
,
Z.
,
Xie
,
Y.
,
Lu
,
J.
, and
Li
,
Y.
,
2019
, “
Stability and Bifurcation of a Delayed Generalized Fractional–Order Prey–Predator Model With Interspecific Competition
,”
Appl. Math. Comput.
,
347
, pp.
360
369
.10.1016/j.amc.2018.11.016
24.
Ahmed
,
E.
, and
Elgazzar
,
A.
,
2007
, “
On Fractional Order Differential Equations Model for Nonlocal Epidemics
,”
Phys. A
,
379
(
2
), pp.
607
614
.10.1016/j.physa.2007.01.010
25.
Huo
,
J.
,
Zhao
,
H.
, and
Zhu
,
L.
,
2015
, “
The Effect of Vaccines on Backward Bifurcation in a Fractional Order HIV Model
,”
Nonlinear Anal.: Real World Appl.
,
26
, pp.
289
305
.10.1016/j.nonrwa.2015.05.014
26.
Yan
,
Y.
, and
Kou
,
C.
,
2012
, “
Stability Analysis for a Fractional Differential Model of HIV Infection of CD 4 + T-Cells With Time Delay
,”
Math. Comput. Simul.
,
82
(
9
), pp.
1572
1585
.10.1016/j.matcom.2012.01.004
27.
Huang
,
C.
,
Cao
,
J.
,
Xiao
,
M.
,
Alsaedi
,
A.
, and
Alsaadi
,
F. E.
,
2017
, “
Controlling Bifurcation in a Delayed Fractional Predator–Prey System With Incommensurate Orders
,”
Appl. Math. Comput.
,
293
, pp.
293
310
.10.1016/j.amc.2016.08.033
28.
Mondal
,
S.
,
Lahiri
,
A.
, and
Bairagi
,
N.
,
2017
, “
Analysis of a Fractional Order Eco-Epidemiological Model With Prey Infection and Type 2 Functional Response
,”
Math. Methods Appl. Sci.
,
40
(
18
), pp.
6776
6789
.10.1002/mma.4490
29.
Wang
,
Z.
,
Wang
,
X.
,
Li
,
Y.
, and
Huang
,
X.
,
2017
, “
Stability and Hopf Bifurcation of Fractional-Order Complex–Valued Single Neuron Model With Time Delay
,”
Int. J. Bifurcation Chaos
,
27
(
13
), p.
1750209
.10.1142/S0218127417502091
30.
Latha
,
V. P.
,
Rihan
,
F. A.
,
Rakkiyappan
,
R.
, and
Velmurugan
,
G.
,
2018
, “
A Fractional-Order Model for Ebola Virus Infection With Delayed Immune Response on Heterogeneous Complex Networks
,”
J. Comput. Appl. Math.
,
339
, pp.
134
146
.10.1016/j.cam.2017.11.032
31.
Wang
,
W.
,
2002
, “
Global Behavior of an SEIRS Epidemic Model With Time Delays
,”
Appl. Math. Lett.
,
15
(
4
), pp.
423
428
.10.1016/S0893-9659(01)00153-7
32.
Song
,
X.
,
Hao
,
M.
, and
Meng
,
X.
,
2009
, “
A Stage-Structured Predator–Prey Model With Disturbing Pulse and Time Delays
,”
Appl. Math. Modell.
,
33
(
1
), pp.
211
223
.10.1016/j.apm.2007.10.020
33.
Podlubny
,
I.
,
1998
,
Fractional Differential Equations
, Vol.
198
,
Elsevier
,
New York
.
34.
Matignon
,
D.
,
1996
, “
Stability Results for Fractional Differential Equations With Applications to Control Processing
,”
Comput. Eng. Syst. Appl.
,
2
, pp.
963
968
. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.4859&rep=rep1&type=pdf
35.
Deng
,
W.
,
Li
,
C.
, and
,
J.
,
2007
, “
Stability Analysis of Linear Fractional Differential System With Multiple Time Delays
,”
Nonlinear Dyn.
,
48
(
4
), pp.
409
416
.10.1007/s11071-006-9094-0
36.
Wang
,
X.
,
Wang
,
Z.
,
Huang
,
X.
, and
Li
,
Y.
,
2018
, “
Dynamic Analysis of a Delayed Fractional-Order SIR Model With Saturated Incidence and Treatment Functions
,”
Int. J. Bifurcation Chaos
,
28
(
14
), p.
1850180
.10.1142/S0218127418501808
37.
Huang
,
C.
,
Li
,
Z.
,
Ding
,
D.
, and
Cao
,
J.
,
2018
, “
Bifurcation Analysis in a Delayed Fractional Neural Network Involving Self-Connection
,”
Neurocomputing
,
314
, pp.
186
197
.10.1016/j.neucom.2018.06.016
You do not currently have access to this content.