Abstract

Noise-induced motions are a significant source of uncertainty in the response of micro-electromechanical systems (MEMS). This is particularly the case for electrostatic MEMS where electrical and mechanical sources contribute to noise and can result in sudden and drastic loss of stability. This paper investigates the effects of noise processes on the stability of electrostatic MEMS via a lumped-mass model that accounts for uncertainty in mass, mechanical restoring force, bias voltage, and AC voltage amplitude. We evaluated the stationary probability density function (PDF) of the resonator response and its basins of attraction in the presence noise and compared them to that those obtained under deterministic excitations only. We found that the presence of noise was most significant in the vicinity of resonance. Even low noise intensity levels caused stochastic jumps between co-existing orbits away from bifurcation points. Moderate noise intensity levels were found to destroy the basins of attraction of the larger orbits. Higher noise intensity levels were found to destroy the basins of attraction of smaller orbits, dominate the dynamic response, and occasionally lead to pull-in. The probabilities of pull-in of the resonator under different noise intensity level are calculated, which are sensitive to the initial conditions.

References

1.
Varadan
,
V. K.
,
Vinoy
,
K. J.
, and
Jose
,
K. A.
,
2003
,
RF MEMS and Their Applications
,
Wiley
,
New York
.
2.
Yang
,
Y. T.
,
Callegari
,
C.
,
Feng
,
X. L.
,
Ekinci
,
K. L.
, and
Roukes
,
M. L.
,
2006
, “
Zeptogram-Scale Nanomechanical Mass Sensing
,”
Nano Lett.
,
6
(
4
), pp.
583
586
.10.1021/nl052134m
3.
Lee
,
H.
,
Partridge
,
A.
, and
Assaderaghi
,
F.
,
2012
, “
Low Jitter and Temperature Stable MEMS Oscillators
,”
IEEE International Frequency Control Symposium Proceedings
, Baltimore, MD, May 21–24, pp.
1
5
.10.1109/FCS.2012.6243704
4.
Lin
,
R. M.
, and
Wang
,
W. J.
,
2006
, “
Structural Dynamics of Microsystems—Current State of Research and Future Directions
,”
Mech. Syst. Signal Process.
,
20
(
5
), pp.
1015
1043
.10.1016/j.ymssp.2005.08.013
5.
Sahai
,
T.
,
Bhiladvala
,
R. B.
, and
Zehnder
,
A. T.
,
2007
, “
Thermomechanical Transitions in Doubly-Clamped Micro-Oscillators
,”
Int. J. Nonlinear Mech.
,
42
(
4
), pp.
596
607
.10.1016/j.ijnonlinmec.2006.12.009
6.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
Wiley
,
New York
.
7.
Turner
,
K. L.
,
Miller
,
S. A.
,
Hartwell
,
P. G.
,
MacDonald
,
N. C.
,
Strogatz
,
S. H.
, and
Adams
,
S. G.
,
1998
, “
Five Parametric Resonances in a Microelectro-Mechanical System
,”
Nature
,
396
(
6707
), pp.
149
152
.10.1038/24122
8.
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A. H.
,
2003
, “
Secondary Resonances of Electrically Actuated Resonant Microsensors
,”
J. Micromech. Microeng.
,
13
(
3
), pp.
491
501
.10.1088/0960-1317/13/3/320
9.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1995
,
Applied Nonlinear Dynamics
,
Wiley
,
New York
.
10.
Miandoab
,
E. M.
,
Pishkenari
,
H. N.
,
Yousefi-Koma
,
A.
, and
Tajaddodianfar
,
F.
,
2014
, “
Chaos Prediction in MEMS-NEMS Resonators
,”
Int. J. Eng. Sci.
,
82
, pp.
74
83
.10.1016/j.ijengsci.2014.05.007
11.
Siewe
,
M. S.
, and
Hegazy
,
U. H.
,
2011
, “
Homoclinic Bifurcation and Chaos Control in MEMS Resonators
,”
Appl. Math. Model.
,
35
(
12
), pp.
5533
5552
.10.1016/j.apm.2011.05.021
12.
Al-Ghamdi
,
M. S.
,
Khater
,
M. E.
,
Stewart
,
K. M. E.
,
Alneamy
,
A.
,
Abdel-Rahman
,
E. M.
, and
Penlidis
,
A.
,
2019
, “
Dynamic Bifurcation MEMS Gas Sensors
,”
J. Micromech. Microeng.
,
29
(
1
), p.
015005
.10.1088/1361-6439/aaedf9
13.
Park
,
S.
,
Khater
,
M.
,
Effa
,
D.
,
Abdel-Rahman
,
E.
, and
Yavuz
,
M.
,
2017
, “
Detection of Cyclic-Fold Bifurcation in Electrostatic MEMS Transducers by Motion-Induced Current
,”
J. Micromech.Microeng.
,
27
(
8
), p.
085007
.10.1088/1361-6439/aa77bd
14.
Nayfeh
,
A. H.
, and
Younis
,
M. I.
,
2005
, “
Dynamics of MEMS Resonators Under Superharmonic and Subharmonic Excitations
,”
J. Micromech. Microeng.
,
15
(
10
), pp.
1840
1847
.10.1088/0960-1317/15/10/008
15.
Zhang
,
W. M.
,
Yan
,
H.
,
Peng
,
Z. K.
, and
Meng
,
G.
,
2014
, “
Electrostatic Pull-in Instability in MEMS/NEMS: A Review
,”
Sens. Actuator A Phys.
,
214
, pp.
187
218
.10.1016/j.sna.2014.04.025
16.
Nayfeh
,
A. H.
,
Younis
,
M. I.
, and
Abdel-Rahman
,
E. M.
,
2007
, “
Dynamic Pull-in Phenomenon in MEMS Resonators
,”
Nonlinear Dyn.
,
48
(
1–2
), pp.
153
163
.10.1007/s11071-006-9079-z
17.
Alsaleem
,
F. M.
,
Younis
,
M. I.
, and
Ouakad
,
H. M.
,
2009
, “
On the Nonlinear Resonances and Dynamic Pull-in of Electrostatically Actuated Resonators
,”
J. Micromech. Microeng.
,
19
(
4
), p.
045013
.10.1088/0960-1317/19/4/045013
18.
De Boer
,
M. P.
, and
Michalske
,
T. A.
,
1999
, “
Accurate Method for Determining Adhesion of Cantilever Beams
,”
J. Appl. Phys.
,
86
(
2
), pp.
817
827
.10.1063/1.370809
19.
Loh
,
O. Y.
, and
Espinosa
,
H. D.
,
2012
, “
Nanoelectromechanical Contact Switches
,”
Nat. Nanotechnol.
,
7
(
5
), pp.
283
295
.10.1038/nnano.2012.40
20.
Van Spengen
,
W. M.
,
Puers
,
R.
,
Mertens
,
R.
, and
De Wolf
,
I.
,
2004
, “
A Comprehensive Model to Predict the Charging and Reliability of Capacitive RF MEMS Switches
,”
J. Micromech. Microeng.
,
14
(
4
), pp.
514
521
.10.1088/0960-1317/14/4/011
21.
Abdel-Rahman
,
E. M.
,
Younis
,
M. I.
, and
Nayfeh
,
A. H.
,
2002
, “
Characterization of the Mechanical Behavior of an Electrically Actuated Microbeam
,”
J. Micromech. Microeng.
,
12
(
6
), pp.
759
766
.10.1088/0960-1317/12/6/306
22.
Krylov
,
S.
, and
Maimon
,
R.
,
2004
, “
Pull-in Dynamics of an Elastic Beam Actuated by Continuously Distributed Electrostatic Force
,”
J. Vib. Acoust.
,
126
(
3
), pp.
332
342
.10.1115/1.1760559
23.
Nwagoum Tuwa
,
P. R.
, and
Woafo
,
P.
,
2018
, “
Analysis of an Electrostatically Actuated Micro-Plate Subject to Proportional-Derivative Controllers
,”
J. Vib. Control
,
24
(
10
), pp.
2020
2029
.10.1177/1077546316674609
24.
Li
,
W.
, and
Liu
,
P. X.
,
2009
, “
Robust Adaptive Tracking Control of Uncertain Electrostatic Micro-Actuators With H-Infinity Performance
,”
Mechatronics
,
19
(
5
), pp.
591
597
.10.1016/j.mechatronics.2009.01.006
25.
Nwagoum Tuwa
,
P. R.
, and
Woafo
,
P.
,
2018
, “
Suppression of the Noise-Induced Effects in an Electrostatic Micro-Plate Using an Adaptive Back-Stepping Sliding Mode Control
,”
ISA Trans.
,
72
, pp.
100
109
.10.1016/j.isatra.2017.10.003
26.
Khater
,
M. E.
,
Vummidi
,
K.
,
Abdel-Rahman
,
E. M.
,
Nayfeh
,
A. H.
, and
Raman
,
S.
,
2011
, “
Dynamic Actuation Methods for Capacitive MEMS Shunt Switches
,”
J. Micromech. Microeng.
,
21
(
3
), p.
035009
.10.1088/0960-1317/21/3/035009
27.
Khater
,
M. E.
,
Al-Ghamdi
,
M.
,
Park
,
S.
,
Stewart
,
K. M. E.
,
Abdel-Rahman
,
E. M.
,
Penlidis
,
A.
,
Nayfeh
,
A. H.
,
Abdel-Aziz
,
A. K. S.
, and
Basha
,
M.
,
2014
, “
Binary MEMS Gas Sensors
,”
J. Micromech. Microeng.
,
24
(
6
), p.
065007
.10.1088/0960-1317/24/6/065007
28.
Rocha
,
L. A.
,
Cretu
,
E.
, and
Wolffenbuttel
,
R. F.
,
2004
, “
Analysis and Analytical Modeling of Static Pull-in With Application to MEMS-Based Voltage Reference and Process Monitoring
,”
J. Microelectromech. Syst.
,
13
(
2
), pp.
342
354
.10.1109/JMEMS.2004.824892
29.
Mohd-Yasin
,
F.
,
Nagel
,
D. J.
, and
Korman
,
C. E.
,
2010
, “
Noise in MEMS
,”
Meas. Sci. Technol.
,
21
(
1
), p.
012001
.10.1088/0957-0233/21/1/012001
30.
Vig
,
J. R.
, and
Kim
,
Y.
,
1999
, " “
Noise in Microelectromechanical System Resonators
,”
IEEE T. Ultrason. Ferr.
,
46
(
6
), pp.
1558
1565
.10.1109/58.808881
31.
Hooge
,
F. N.
,
1994
, “
1/f Noise Sources
,”
IEEE T. Electron. Dev.
,
41
(
11
), pp.
1926
1935
.10.1109/16.333808
32.
Leland
,
R. P.
,
2005
, “
Mechanical-Thermal Noise in MEMS Gyroscopes
,”
IEEE Sens. J.
,
5
(
3
), pp.
493
500
.10.1109/JSEN.2005.844538
33.
Djurić
,
Z.
,
Jakšić
,
O.
, and
Randjelović
,
D.
,
2002
, “
Adsorption–Desorption Noise in Micromechanical Resonant Structures
,”
Sensor. Actuat. A-Phys.
,
96
(
2–3
), pp.
244
251
.10.1016/S0924-4247(01)00834-2
34.
Lajimi
,
S. A. M.
,
Heppler
,
G. R.
, and
Abdel-Rahman
,
E. M.
,
2017
, “
A Mechanical–Thermal Noise Analysis of a Nonlinear Microgyroscope
,”
Mech. Syst. Signal Process.
,
83
, pp.
163
175
.10.1016/j.ymssp.2016.06.005
35.
Al-Ghamdi
,
M.
,
Alneamy
,
A.
,
Park
,
S.
,
Li
,
B.
,
Khater
,
M.
,
Abdel-Rahman
,
E.
,
Heppler
,
G.
, and
Yavuz
,
M.
,
2017
, “
Nonlinear Parameter Identification of a Resonant Electrostatic MEMS Actuator
,”
Sensors
,
17
(
5
), pp.
1121
1129
.10.3390/s17051121
36.
Ekinci
,
K. L.
,
Yang
,
Y. T.
, and
Roukes
,
M. L.
,
2004
, “
Ultimate Limits to Inertial Mass Sensing Based Upon Nanoelectromechanical Systems
,”
J. Appl. Phys.
,
95
(
5
), pp.
2682
2689
.10.1063/1.1642738
37.
Effa
,
D.
,
Abdel-Rahman
,
E.
, and
Yavuz
,
M.
,
2014
, “
Analysis of Thermal Noise in Frequency-Modulated Gyroscopes
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, Montreal, Canada, Aug. 21–26.
38.
Verma
,
V. K.
, and
Yadava
,
R. D. S.
,
2016
, “
Stochastic Resonance in MEMS Capacitive Sensors
,”
Sens. Actuator. B-Chem.
,
235
, pp.
583
602
.10.1016/j.snb.2016.05.110
39.
Venstra
,
W. J.
,
Westra
,
H. J.
, and
Van Der Zant
,
H. S.
,
2013
, “
Stochastic Switching of Cantilever Motion
,”
Nat. Commun.
,
4
(
1
), pp.
1
6.
10.1038/ncomms3624
40.
Shoshani
,
O.
,
Heywood
,
D.
,
Yang
,
Y.
,
Kenny
,
T. W.
, and
Shaw
,
S. W.
,
2016
, “
Phase Noise Reduction in an MEMS Oscillator Using a Nonlinearly Enhanced Synchronization Domain
,”
J. Micromech. Microeng.
,
25
(
5
), pp.
870
876
.
41.
Zhang
,
W. M.
,
Tabata
,
O.
,
Tsuchiya
,
T.
, and
Meng
,
G.
,
2011
, “
Noise-Induced Chaos in the Electrostatically Actuated MEMS Resonators
,”
Phys. Lett. A
,
375
(
32
), pp.
2903
2910
.10.1016/j.physleta.2011.06.020
42.
Ramakrishnan
,
S.
, and
Balachandran
,
B.
,
2010
, “
Energy Localization and White Noise-Induced Enhancement of Response in a Micro-Scale Oscillator Array
,”
Nonlinear Dyn.
,
62
(
1–2
), pp.
1
16
.10.1007/s11071-010-9694-6
43.
Perkins
,
E.
, and
Balachandran
,
B.
,
2012
, “
Noise-Enhanced Response of Nonlinear Oscill-Ators
,”
Procedia Iutam
,
5
, pp.
59
68
.10.1016/j.piutam.2012.06.009
44.
Perkins
,
E.
,
Kimura
,
M.
,
Hikihara
,
T.
, and
Balachandran
,
B.
,
2016
, “
Effects of Noise on Symmetric Intrinsic Localized Modes
,”
Nonlinear Dyn.
,
85
(
1
), pp.
333
341
.10.1007/s11071-016-2688-2
45.
Balachandran
,
B.
,
Perkins
,
E.
, and
Fitzgerald
,
T.
,
2015
, “
Response Localization in Micro-Scale Oscillator Arrays: Influence of Cubic Coupling Nonlinearities
,”
Int. J. Dyn. Control
,
3
(
2
), pp.
183
188
.10.1007/s40435-014-0139-9
46.
Dolleman
,
R. J.
,
Belardinelli
,
P.
,
Houri
,
S.
,
van der Zant
,
H. S.
,
Alijani
,
F.
, and
Steeneken
,
P. G.
,
2019
, “
High-Frequency Stochastic Switching of Graphene Resonators Near Room Temperature
,”
Nano Lett.
,
19
(
2
), pp.
1282
1288
.10.1021/acs.nanolett.8b04862
47.
Agarwal
,
V.
,
Zheng
,
X.
, and
Balachandran
,
B.
,
2018
, “
Influence of Noise on Frequency Responses of Softening Duffing Oscillators
,”
Phys. Lett. A
,
382
(
46
), pp.
3355
3364
.10.1016/j.physleta.2018.09.008
48.
Li
,
L.
,
Han
,
J.
,
Zhang
,
Q.
, and
Liu
,
C.
,
2018
, “
Stochastic Dynamic Behavior of Electrostatically Actuated Clamped–Clamped Microbeams With Consideration of Thermal Field
,”
Int. J. Nonlinear Mech.
,
105
, pp.
192
199
.10.1016/j.ijnonlinmec.2018.05.022
49.
Younis
,
M. I.
,
2011
, “
Elements of Lumped-Parameter Modeling in MEMS
,”
MEMS Linear and Nonlinear Statics and Dynamics
,
Springer
,
Boston, MA
, pp.
97
153
.
50.
Qiao
,
Y.
,
Xu
,
W.
,
Sun
,
J. J.
, and
Zhang
,
H. X.
,
2019
, “
Reliability of Electrostatically Actuated MEMS Resonators to Random Mass Disturbance
,”
Mech. Syst. Signal Process.
,
121
, pp.
711
724
.10.1016/j.ymssp.2018.11.055
51.
Mirzakhalili
,
E.
, and
Epureanu
,
B. I.
,
2019
, “
Probabilistic Analysis of Bifurcations in Stochastic Nonlinear Dynamical Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
4
), p.
041006
.10.1115/1.4043669
52.
Gopalakrishnan
,
E.
,
Tony
,
J.
,
Sreelekha
,
E.
, and
Sujith
,
R.
,
2016
, “
Stochastic Bifurcations in a Prototypical Thermoacoustic System
,”
Phys. Rev. E
,
94
(
2
), p.
022203
.10.1103/PhysRevE.94.022203
53.
Bashkirtseva
,
I.
,
Ryazanova
,
T.
, and
Ryashko
,
L.
,
2015
, “
Stochastic Bifurcations Caused by Multiplicative Noise in Systems With Hard Excitement of Auto-Oscillations
,”
Phys. Rev. E
,
92
(
4
), p.
042908
.10.1103/PhysRevE.92.042908
You do not currently have access to this content.