Abstract
One-dimensional continuous structures include longitudinal vibration of bars, torsional vibration of circular shafts, and transverse vibration of beams. Using the linear time-varying system theory, algorithms are developed in this paper to compute natural frequencies and mode shapes of these structures with nonuniform spatial parameters (mass distributions, material properties and cross-sectional areas) which can have jump discontinuities. A general numerical approach has been presented to include Dirac-delta functions and their spatial derivatives due to jump discontinuities. Numerical results are presented to illustrate the application of these techniques to the solution of different types of spatial variations of parameters and boundary conditions.