The paper focuses on the identification of discrete-time bilinear forms in the special case when the external noise (disturbance) is an autoregressive average moving process. The proposed estimation procedure is iterative where, at each iteration, two sets of parameter vectors are estimated interactively. Using the hierarchical technique, a hierarchical generalized extended least squares-based iterative (H-GELSI) algorithm is proposed for avoiding estimating the redundant parameters. In contrast to the hierarchical generalized extended gradient-based iterative (H-GEGI) algorithm, the proposed algorithm can give more accurate parameter estimates. The main results derived in this paper are verified by means of both the computational efficiency comparison and two numerical simulations.

References

1.
Gan
,
M.
,
Li
,
H. X.
, and
Peng
,
H.
,
2015
, “
A Variable Projection Approach for Efficient Estimation of RBF-ARX Model
,”
IEEE Trans. Cybern.
,
45
(
3
), pp.
476
485
.
2.
Zarei
,
A.
, and
Tavakoli
,
S.
,
2018
, “
Synchronization of Quadratic Chaotic Systems Based on Simultaneous Estimation of Nonlinear Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
8
), p.
081001
.
3.
Kim
,
P.
,
Rogers
,
J.
,
Sun
,
J.
, and
Bollt
,
E.
,
2016
, “
Causation Entropy Identifies Sparsity Structure for Parameter Estimation of Dynamic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
1
), p.
011008
.
4.
Xu
,
L.
,
2014
, “
A Proportional Differential Control Method for a Time-Delay System Using the Taylor Expansion Approximation
,”
Appl. Math. Comput.
,
236
, pp.
391
399
.
5.
Gan
,
M.
,
Chen
,
C. L. P.
,
Chen
,
G. Y.
, and
Chen
,
L.
,
2018
, “
On Some Separated Algorithms for Separable Nonlinear Least Squares Problems
,”
IEEE Trans. Cybern.
,
48
(
10
), pp.
2866
2874
.
6.
Chen
,
G. Y.
,
Gan
,
M.
, and
Chen
,
G. L.
,
2018
, “
Generalized Exponential Autoregressive Models for Nonlinear Time Series: Stationarity, Estimation and Applications
,”
Inf. Sci.
,
438
, pp.
46
57
.
7.
Kolansky
,
J.
, and
Sandu
,
C.
,
2017
, “
Enhanced Polynomial Chaos-Based Extended Kalman Filter Technique for Parameter Estimation
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
2
), p.
021012
.
8.
Zhang
,
X.
,
Ding
,
F.
,
Xu
,
L.
, and
Yang
,
E. F.
,
2019
, “
Highly Computationally Efficient State Filter Based on the Delta Operator
,”
Int. J. Adapt. Control Signal Process.
,
33
(
6
), pp.
875
889
.
9.
Na
,
J.
,
Herrmann
,
G.
, and
Zhang
,
K. Q.
,
2017
, “
Improving Transient Performance of Adaptive Control Via a Modified Reference Model and Novel Adaptation
,”
Int. J. Robust Nonlinear Control.
,
27
(
8
), pp.
1351
1372
.
10.
Ding
,
F.
,
2013
, “
Two-Stage Least Squares Based Iterative Estimation Algorithm for CARARMA System Modeling
,”
Appl. Math. Model.
,
37
(
7
), pp.
4798
4808
.
11.
Ding
,
F.
,
2013
, “
Decomposition Based Fast Least Squares Algorithm for Output Error Systems
,”
Signal Process.
,
93
(
5
), pp.
1235
1242
.
12.
Zhang
,
X.
,
Xu
,
L.
,
Ding
,
F.
, and
Hayat
,
T.
,
2018
, “
Combined State and Parameter Estimation for a Bilinear State Space System With Moving Average Noise
,”
J. Franklin Inst.
,
355
(
6
), pp.
3079
3103
.
13.
Yu
,
C.
, and
Verhaegen
,
M.
,
2018
, “
Data-Driven Fault Estimation of Non-Minimum Phase LTI Systems
,”
Automatica
,
92
, pp.
181
187
.
14.
Xu
,
L.
,
Xiong
,
W. L.
,
Alsaedi
,
A.
, and
Hayat
,
T.
,
2018
, “
Hierarchical Parameter Estimation for the Frequency Response Based on the Dynamical Window Data
,”
Int. J. Control Autom. Syst.
,
16
(
4
), pp.
1756
1764
.
15.
Xu
,
L.
,
2017
, “
The Parameter Estimation Algorithms Based on the Dynamical Response Measurement Data
,”
Adv. Mech. Eng.
,
9
(
11
), pp.
1
12
.
16.
Liu
,
C. Y.
,
Gong
,
Z. H.
, and
Teo
,
K. L.
,
2018
, “
Robust Parameter Estimation for Nonlinear Multistage Time-Delay Systems With Noisy Measurement Data
,”
Appl. Math. Model.
,
53
, pp.
353
368
.
17.
Zhang
,
X.
,
Ding
,
F.
,
Xu
,
L.
, and
Yang
,
E. F.
,
2018
, “
State Filtering-Based Least Squares Parameter Estimation for Bilinear Systems Using the Hierarchical Identification Principle
,”
IET Control Theory Appl.
,
12
(
12
), pp.
1704
1713
.
18.
Zhang
,
X.
,
Ding
,
F.
,
Alsaadi
,
F. E.
, and
Hayat
,
T.
,
2017
, “
Parameter Identification of the Dynamical Models for Bilinear State Space Systems
,”
Nonlinear Dyn.
,
89
(
4
), pp.
2415
2429
.
19.
Zhang
,
X.
,
Ding
,
F.
,
Xu
,
L.
,
Alsaedi
,
A.
, and
Hayat
,
T.
,
2019
, “
A Hierarchical Approach for Joint Parameter and State Estimation of a Bilinear System With Autoregressive Noise
,”
Mathematics
,
7
(
4
), pp.
1
17
.
20.
Allafi
,
W.
,
Zajic
,
I.
,
Uddin
,
K.
, and
Burnham
,
K. J.
,
2017
, “
Parameter Estimation of the Fractional-Order Hammerstein-Wiener Model Using Simplified Refined Instrumental Variable Fractional-Order Continuous Time
,”
IET Control Theory Appl.
,
11
(
15
), pp.
2591
2598
.
21.
Wang
,
Y. J.
, and
Ding
,
F.
,
2017
, “
A Filtering Based Multi-Innovation Gradient Estimation Algorithm and Performance Analysis for Nonlinear Dynamical Systems
,”
IMA J. Appl. Math.
,
82
(
6
), pp.
1171
1191
.
22.
Ayala
,
V.
,
Silva
,
A. D.
, and
Ferreira
,
M.
,
2018
, “
Affine and Bilinear Systems on Lie Groups
,”
Syst. Control Lett.
,
117
, pp.
23
39
.
23.
Bai
,
E. W.
,
1998
, “
An Optimal Two-Stage Identification Algorithm for Hammerstein-Wiener Nonlinear Systems
,”
Automatica
,
34
(
3
), pp.
333
338
.
24.
Yu
,
F.
,
Mao
,
Z. Z.
,
Jia
,
M. X.
, and
Yuan
,
P.
,
2014
, “
Recursive Parameter Identification of Hammerstein-Wiener Systems With Measurement Noise
,”
Signal Process.
,
105
, pp.
137
147
.
25.
Benesty
,
J.
,
Paleologu
,
C.
, and
Ciochina
,
S.
,
2017
, “
On the Identification of Bilinear Forms With the Wiener Filter
,”
IEEE Signal Process. Lett.
,
24
(
5
), pp.
653
657
.
26.
Paleologu
,
C.
,
Benesty
,
J.
, and
Ciochină
,
S.
,
2018
, “
Adaptive Filtering for the Identification of Bilinear Forms
,”
Digit. Signal Process.
,
75
, pp.
153
167
.
27.
Bai
,
E. W.
, and
Liu
,
Y.
,
2006
, “
Least Squares Solutions of Bilinear Equations
,”
Syst. Control Lett.
,
55
(
6
), pp.
466
472
.
28.
Wang
,
J. D.
,
Zhang
,
Q. H.
, and
Ljung
,
L.
,
2009
, “
Revisiting Hammerstein System Identification Through the Two-Stage Algorithm for Bilinear Parameter Estimation
,”
Automatica
,
45
(
11
), pp.
2627
2633
.
29.
Filipovic
,
V. Z.
,
2015
, “
Consistency of the Robust Recursive Hammerstein Model Identification Algorithm
,”
J. Franklin Inst.
,
352
(
5
), pp.
1932
1945
.
30.
Xu
,
L.
,
Chen
,
L.
, and
Xiong
,
W. L.
,
2015
, “
Parameter Estimation and Controller Design for Dynamic Systems From the Step Responses Based on the Newton Iteration
,”
Nonlinear Dyn.
,
79
(
3
), pp.
2155
2163
.
31.
Ding
,
F.
,
Pan
,
J.
,
Alsaedi
,
A.
, and
Hayat
,
T.
,
2019
, “
Gradient-Based Iterative Parameter Estimation Algorithms for Dynamical Systems From Observation Data
,”
Mathematics
,
7
(
5
), pp.
1
15
.
32.
Pan
,
J.
,
Ma
,
H.
, and
Jiang
,
X.
,
2018
, “
Adaptive Gradient-Based Iterative Algorithm for Multivariate Controlled Autoregressive Moving Average Systems Using the Data Filtering Technique
,”
Complexity
,
2018
, p.
9598307
.
33.
Xu
,
L.
,
2015
, “
Application of the Newton Iteration Algorithm to the Parameter Estimation for Dynamical Systems
,”
J. Comput. Appl. Math.
,
288
, pp.
33
43
.
34.
Xu
,
L.
,
2016
, “
The Damping Iterative Parameter Identification Method for Dynamical Systems Based on the Sine Signal Measurement
,”
Signal Process.
,
120
, pp.
660
667
.
35.
Zhang
,
Z. N.
,
Ding
,
F.
, and
Liu
,
X. G.
,
2011
, “
Hierarchical Gradient Based Iterative Parameter Estimation Algorithm for Multivariable Output Error Moving Average Systems
,”
Comput. Math. Appl.
,
61
(
3
), pp.
672
682
.
36.
Ding
,
F.
,
Liu
,
X. G.
, and
Chu
,
J.
,
2013
, “
Gradient-Based and Least-Squares-Based Iterative Algorithms for Hammerstein Systems Using the Hierarchical Identification Principle
,”
IET Control Theory Appl.
,
7
(
2
), pp.
176
184
.
37.
Chen
,
M. T.
,
Ding
,
F.
,
Xu
,
L.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2017
, “
Iterative Identification Algorithms for Bilinear-in-Parameter Systems With Autoregressive Moving Average Noise
,”
J. Franklin Inst.
,
354
(
17
), pp.
7885
7898
.
38.
Chen
,
M. T.
,
Ding
,
F.
,
Alsaed
,
A.
, and
Hayat
,
T.
,
2018
, “
Iterative Identification Algorithms for Bilinear-in-Parameter Systems by Using the Over-Parameterization Model and the Decomposition
,”
Int. J. Control Autom. Syst.
,
16
(
6
), pp.
2634
2643
.
39.
Farina
,
M.
,
Zhang
,
X. L.
, and
Scattolini
,
R.
,
2018
, “
A Hierarchical Multi-Rate MPC Scheme for Interconnected Systems
,”
Automatica
,
90
, pp.
38
46
.
40.
Wang
,
D. Q.
,
Li
,
L. W.
,
Ji
,
Y.
, and
Yan
,
Y. R.
,
2018
, “
Model Recovery for Hammerstein Systems Using the Auxiliary Model Based Orthogonal Matching Pursuit Method
,”
Appl. Math. Model.
,
54
, pp.
537
550
.
41.
Dong
,
S. J.
,
Liu
,
T.
, and
Wang
,
Q. G.
,
2018
, “
Identification of Hammerstein Systems With Time Delay Under Load Disturbance
,”
IET Control Theory Appl.
,
12
(
7
), pp.
942
952
.
42.
Abrahamsson
,
R.
,
Kay
,
S. M.
, and
Stoica
,
P.
,
2007
, “
Estimation of the Parameters of a Bilinear Model With Applications to Submarine Detection and System Identification
,”
Digit. Signal Process.
,
17
(
4
), pp.
756
773
.
43.
Bai
,
E. W.
,
2002
, “
A Blind Approach to the Hammerstein-Wiener Model Identification
,”
Automatica
,
38
(
6
), pp.
967
979
.
44.
Chen
,
M. T.
,
Ding
,
F.
, and
Yang
,
E. F.
,
2018
, “
Gradient-Based Iterative Parameter Estimation for Bilinear-in-Parameter Systems Using the Model Decomposition Technique
,”
IET Control Theory Appl.
,
12
(
17
), pp.
2380
2389
.
45.
Xu
,
L.
, and
Ding
,
F.
,
2017
, “
The Parameter Estimation Algorithms for Dynamical Response Signals Based on the Multi-Innovation Theory and the Hierarchical Principle
,”
IET Signal Process.
,
11
(
2
), pp.
228
237
.
46.
Xu
,
L.
, and
Ding
,
F.
,
2017
, “
Recursive Least Squares and Multi-Innovation Stochastic Gradient Parameter Estimation Methods for Signal Modeling
,”
Circuits Syst. Signal Process.
,
36
(
4
), pp.
1735
1753
.
47.
Xu
,
L.
,
Ding
,
F.
,
Gu
,
Y.
,
Alsaedi
,
A.
, and
Hayat
,
T.
,
2017
, “
A Multi-Innovation State and Parameter Estimation Algorithm for a State Space System With D-Step State-Delay
,”
Signal Process.
,
140
, pp.
97
103
.
48.
Xu
,
L.
, and
Ding
,
F.
,
2017
, “
Parameter Estimation for Control Systems Based on Impulse Responses
,”
Int. J. Control Autom. Syst.
,
15
(
6
), pp.
2471
2479
.
49.
Xu
,
L.
, and
Ding
,
F.
,
2018
, “
Iterative Parameter Estimation for Signal Models Based on Measured Data
,”
Circuits Syst. Signal Process.
,
37
(
7
), pp.
3046
3069
.
50.
Xu
,
L.
,
Ding
,
F.
, and
Zhu
,
Q. M.
,
2019
, “
Hierarchical Newton and Least Squares Iterative Estimation Algorithm for Dynamic Systems by Transfer Functions Based on the Impulse Responses
,”
Int. J. Syst. Sci.
,
50
(
1
), pp.
141
151
.
51.
Sun
,
Z. Y.
,
Zhang
,
D.
,
Meng
,
Q.
, and
Chen
,
C. C.
,
2019
, “
Feedback Stabilization of Time-Delay Nonlinear Systems With Continuous Time-Varying Output Function
,”
Int. J. Syst. Sci.
,
50
(
2
), pp.
244
255
.
52.
Wang
,
T. Z.
,
Dong
,
J. J.
,
Xie
,
T.
,
Diallo
,
D.
, and
Benbouzid
,
M.
,
2019
, “
A Self-Learning Fault Diagnosis Strategy Based on Multi-Model Fusion
,”
Information
,
10
(
3
), p.
116
.
53.
Zhan
,
X. S.
,
Guan
,
Z. H.
,
Zhang
,
X. H.
, and
Yuan
,
F. S.
,
2013
, “
Optimal Tracking Performance and Design of Networked Control Systems With Packet Dropout
,”
J. Frankl. Inst.
,
350
(
10
), pp.
3205
3216
.
54.
Zhan
,
X. S.
,
Cheng
,
L. L.
,
Wu
,
J.
,
Yang
,
Q. S.
, and
Han
,
T.
,
2019
, “
Optimal Modified Performance of MIMO Networked Control Systems With Multi-Parameter Constraints
,”
ISA Trans.
,
84
(
1
), pp.
111
117
.
55.
Pan
,
J.
,
Li
,
W.
, and
Zhang
,
H.
, P.,
2018
, “
Control Algorithms of Magnetic Suspension Systems Based on the Improved Double Exponential Reaching Law of Sliding Mode Control
,”
Int. J. Control Autom. Syst.
,
16
(
6
), pp.
2878
2887
.
56.
Ma
,
F. Y.
,
Yin
,
Y. K.
, and
Li
,
M.
,
2019
, “
Start-Up Process Modelling of Sediment Microbial Fuel Cells Based on Data Driven
,”
Math. Probl. Eng.
,
2019
, p.
7403732
.
57.
Tian
,
X. P.
, and
Niu
,
H. M.
,
2019
, “
A Bi-Objective Model With Sequential Search Algorithm for Optimizing Network-Wide Train Timetables
,”
Comput. Ind. Eng.
,
127
, pp.
1259
1272
.
58.
Yang
,
F.
,
Zhang
,
P.
, and
Li
,
X. X.
,
2019
, “
The Truncation Method for the Cauchy Problem of the Inhomogeneous Helmholtz Equation
,”
Appl. Anal.
,
98
(
5
), pp.
991
1004
.
59.
Jiang
,
C. M.
,
Zhang
,
F. F.
, and
Li
,
T. X.
,
2018
, “
Synchronization and Antisynchronization of N-Coupled Fractional-Order Complex Chaotic Systems With Ring Connection
,”
Math. Meth. Appl. Sci.
,
41
(
7
), pp.
2625
2638
.
60.
Wu
,
M. H.
,
Li
,
X.
,
Liu
,
C.
,
Liu
,
M.
,
Zhao
,
N.
,
Wang
,
J.
,
Wan
,
X. K.
,
Rao
,
Z. H.
, and
Zhu
,
L.
,
2019
, “
Robust Global Motion Estimation for Video Security Based on Improved k-Means Clustering
,”
J. Ambient Intell. Humanized Comput.
,
10
(
2
), pp.
439
448
.
61.
Wan
,
X. K.
,
Wu
,
H.
,
Qiao
,
F.
,
Li
,
F.
,
Li
,
Y.
,
Yan
,
Y.
, and
Wei
,
J.
,
2019
, “
Electrocardiogram Baseline Wander Suppression Based on the Combination of Morphological and Wavelet Transformation Based Filtering
,”
Comput. Math. Method Med.
,
2019
, p.
7196156
.
62.
Feng
,
L.
,
Li
,
Q. X.
, and
Li
,
Y. F.
,
2019
, “
Imaging With 3-D Aperture Synthesis Radiometers
,”
IEEE Trans. Geosci. Remote Sensing
,
57
(
4
), pp.
2395
2406
.
63.
Shi
,
W. X.
,
Liu
,
N.
,
Zhou
,
Y. M.
, and
Cao
,
X. A.
,
2019
, “
Effects of Postannealing on the Characteristics and Reliability of Polyfluorene Organic Light-Emitting Diodes
,”
IEEE Trans. Electron Devices.
,
66
(
2
), pp.
1057
1062
.
64.
Fu
,
B.
,
Ouyang
,
C. X.
,
Li
,
C. S.
,
Wang
,
J. W.
, and
Gul
,
E.
,
2019
, “
An Improved Mixed Integer Linear Programming Approach Based on Symmetry Diminishing for Unit Commitment of Hybrid Power System
,”
Energies
,
12
(
5
), p.
833
.
65.
Wu
,
T. Z.
,
Shi
,
X.
,
Liao
,
L.
,
Zhou
,
C. J.
,
Zhou
,
H.
, and
Su
,
Y. H.
,
2019
, “
A Capacity Configuration Control Strategy to Alleviate Power Fluctuation of Hybrid Energy Storage System Based on Improved Particle Swarm Optimization
,”
Energies
,
12
(
4
), p.
642
.
66.
Wen
,
Y. Z.
, and
Yin
,
C. C.
,
2019
, “
Solution of Hamilton-Jacobi-Bellman Equation in Optimal Reinsurance Strategy Under Dynamic VaR Constraint
,”
J. Funct. space.
,
2019
, p.
6750892
.
67.
Rao
,
Z. H.
,
Zeng
,
C. Y.
,
Wu
,
M. H.
,
Wang
,
Z. F.
,
Zhao
,
N.
,
Liu
,
M.
, and
Wan
,
X. K.
,
2018
, “
Research on a Handwritten Character Recognition Algorithm Based on an Extended Nonlinear Kernel Residual Network
,”
KSII Trans. Internet Inf. Syst.
,
12
(
1
), pp.
413
435
.
68.
Zhao
,
N.
,
Liu
,
R.
,
Chen
,
Y.
,
Wu
,
M.
,
Jiang
,
Y. H.
,
Xiong
,
W.
, and
Liu
,
C.
,
2018
, “
Contract Design for Relay Incentive Mechanism Under Dual Asymmetric Information in Cooperative Networks
,”
Wireless Networks
,
24
(
8
), pp.
3029
3044
.
69.
Ding
,
J.
,
Chen
,
J. Z.
,
Lin
,
J. X.
, and
Wan
,
L. J.
,
2019
, “
Particle Filtering Based Parameter Estimation for Systems With Output-Error Type Model Structures
,”
J. Franklin Inst.
,
356
(
10
), pp.
5521
5540
.
70.
Sha
,
X. Y.
,
Xu
,
Z. S.
, and
Yin
,
C. C.
,
2019
, “
Elliptical Distribution-Based Weight-Determining Method for Ordered Weighted Averaging Operators
,”
Int. J. Intell. Syst.
,
34
(
5
), pp.
858
877
.
71.
Li
,
X. Y.
,
Li
,
H. X.
, and
Wu
,
B. Y.
,
2019
, “
Piecewise Reproducing Kernel Method for Linear Impulsive Delay Differential Equations With Piecewise Constant Arguments
,”
Appl. Math. Comput.
,
349
, pp.
304
313
.
You do not currently have access to this content.