The problem of geometrically nonlinear, steady-state vibrations of beams made of viscoelastic (VE) materials is considered in this paper. The Euler–Bernoulli and the von Kármán theories are used to describe the dynamic behavior of beams. The VE material of the beams is modeled using the Zener model. Two harmonics are present in the assumed steady-state solution of the problem at hand, which enables an analysis of both the primary and secondary resonances. The virtual work equation and the harmonic balance method are used to derive the amplitude equations in the explicit form. The response curves are determined using the continuation method and treating the frequency of excitation as the main parameter. The results of several examples, which illustrate the dynamic behavior of the considered beams, are presented and discussed.

References

1.
Lakes
,
S.
,
2009
,
Viscoelastic Materials
,
Cambridge University Press
,
New York
.
2.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1989
, “
Fractional Calculus—A Different Approach to the Analysis of Viscoelastically Damped Structures
,”
AIAA J.
,
27
(
10
), pp.
1412
1417
.
3.
Lewandowski
,
R.
, and
Baum
,
M.
,
2015
, “
Dynamic Characteristics of Multilayered Beams With Viscoelastic Layers Described by the Fractional Zener Model
,”
Arch. Appl. Mech.
,
85
(
12
), pp.
1793
1814
.
4.
Plagianakos
,
T. S.
, and
Saravanos
,
D. A.
,
2009
, “
High-Order Layerwise Finite Element for the Damped Free-Vibration Response of Thick Composite and Sandwich Composite Plates
,”
Int. J. Numer. Meth. Eng.
,
77
(
11
), pp.
1593
1626
.
5.
Kovac
,
E. J.
,
Anderson
,
W. J.
, and
Scott
,
R. A.
,
1971
, “
Forced Non-Linear Vibrations of a Damped Sandwich Beam
,”
J. Sound Vib.
,
17
(
1
), pp.
25
39
.
6.
Hyer
,
M. W.
,
Anderson
,
W. J.
, and
Scott
,
R. A.
,
1976
, “
Non-Linear Vibrations of Three-Layer Beams With Viscoelastic Cores—Part I: Theory
,”
J. Sound Vib.
,
46
(
1
), pp.
121
136
.
7.
Bilasse
,
M.
,
Daya
,
E. M.
, and
Azrar
,
L.
,
2010
, “
Linear and Nonlinear Vibrations Analysis of Viscoelastic Sandwich Beams
,”
J. Sound Vib.
,
329
(
23
), pp.
4950
4969
.
8.
Daya
,
E. M.
,
Azrar
,
L.
, and
Potier-Ferry
,
M.
,
2004
, “
An Amplitude Equation for the Non-Linear Vibration of Viscoelastically Damped Sandwich Beams
,”
J. Sound Vib.
,
271
(
3–5
), pp.
789
813
.
9.
Bilasse
,
M.
,
Azrar
,
L.
, and
Daya
,
M.
,
2011
, “
Complex Modes Based Numerical Analysis of Viscoelastic Sandwich Plates Vibrations
,”
Comput. Struct.
,
89
(
7–8
), pp.
539
555
.
10.
Mahmoudkhani
,
S.
,
Haddadpour
,
H.
, and
Navazi
,
H. M.
,
2014
, “
The Effects of Nonlinearities on the Vibration of Viscoelastic Sandwich Plates
,”
Int. J. Nonlin. Mech.
,
62
, pp.
41
57
.
11.
Leung
,
A. Y. T.
,
Yang
,
H. X.
,
Zhu
,
P.
, and
Guo
,
Z. J.
,
2013
, “
Steady State Response of Fractionally Damped Nonlinear Viscoelastic Arches by Residue Harmonic Homotopy
,”
Comput. Struct.
,
121
, pp.
10
21
.
12.
Demir
,
D.
,
Bildik
,
N.
, and
Sinir
,
B. G.
,
2012
, “
Application of Fractional Calculus in the Dynamics of Beams
,”
Bound Value Probl.
,
2012
, p.
135
.
13.
Mahmoodi
,
S. N.
,
Khadem
,
S. E.
, and
Kokabi
,
M.
,
2007
, “
Non-Linear Free Vibrations of Kelvin–Voigt Visco-Elastic Beams
,”
Int. J. Mech. Sci.
,
49
(
6
), pp.
722
732
.
14.
Wielentejczyk
,
P.
, and
Lewandowski
,
R.
,
2017
, “
Geometrically Nonlinear, Steady State Vibration of Viscoelastic Beams
,”
Int. J. Nonlinear Mech.
,
89
, pp.
177
186
.
15.
Lewandowski
,
R.
, and
Wielentejczyk
,
P.
,
2017
, “
Nonlinear Vibration of Viscoelastic Beams Described Using Fractional Order Derivatives
,”
J. Sound Vib.
,
399
, pp.
228
243
.
16.
Malek-Hosseini
,
Z.
, and
Eipakchi
,
H.
,
2017
, “
An Analytical Procedure for Dynamic Response Determination of a Viscoelastic Beam With Moderately Large Deflection Using First-Order Shear Deformation Theory
,”
Mech. Adv. Mater. Struct.
,
24
(
10
), pp.
875
884
.
17.
Esmaeilzadeh
,
E.
, and
Jalali
,
M. A.
,
1999
, “
Nonlinear Oscillations of Viscoelastic Rectangular Plates
,”
Nonlinear Dyn.
,
18
, pp.
311
319
.
18.
Kim
,
T. W.
, and
Kim
,
J. H.
,
2002
, “
Nonlinear Vibration of Viscoelastic Laminated Composite Plates
,”
Int. J. Solids Struct.
,
39
(
10
), pp.
2857
2870
.
19.
Yao
,
G.
, and
Li
,
F.
,
2018
, “
Nonlinear Primary Resonances of Lattice Sandwich Beams With Pyramidal Truss Core and Viscoelastic Surfaces
,”
Acta Mech.
,
229
(
10
), pp.
4091
4100
.
20.
Zhu
,
B.
,
Dong
,
Y.
, and
Li
,
Y.
,
2018
, “
Nonlinear Dynamics of a Viscoelastic Sandwich Beam With Parametric Excitations and Internal Resonance
,”
Nonlinear Dyn.
,
94
(
4
), pp.
2575
2612
.
21.
Rahmanian
,
S.
, and
Hosseini-Hashemi
,
S.
,
2019
, “
Size-Dependent Resonant Response of a Double-Layered Viscoelastic Nanoresonator Under Electrostatic and Piezoelectric Actuations Incorporating Surface Effects and Casimir Regime
,”
Int. J. Nonlinear Mech.
,
109
, pp.
118
131
.
22.
Farokhi
,
H.
, and
Ghayesh
,
M. H.
,
2018
, “
Viscoelastic Resonant Responses of Shear Deformable Imperfect Microbeams
,”
J. Vibr. Control
,
24
(
14
), pp.
3049
3062
.
23.
Youzera
,
H.
, and
Meftah
,
S. A.
,
2017
, “
Nonlinear Damping and Forced Vibration Behaviour of Sandwich Beams With Transverse Normal Stress
,”
Compos. Struct.
,
179
, pp.
258
268
.
24.
Ribeiro
,
P.
, and
Thomas
,
O.
,
2017
, “
Nonlinear Modes of Vibration and Internal Resonances in Nonlocal Beams
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(3), p.
031017
.
25.
Andrianov
,
I. V.
,
Danishevskyy
,
V. V.
, and
Graham Rogerson
,
G.
,
2018
, “
Internal Resonances and Modes Interactions in Non-Linear Vibrations of Viscoelastic Heterogeneous Solids
,”
J. Sound Vib.
,
433
, pp.
55
64
.
26.
Youzera
,
H.
,
Meftah
,
S. A.
, and
Daya
,
M.
,
2017
, “
Superharmonic Resonance of Cross-Ply Laminates by the Method of Multiple Scales
,”
ASME J. Comput. Nonlinear Dyn.
,
12
, p.
054503
.
27.
Wang
,
Y.
,
Li
,
F.
,
Wang
,
Y.
, and
Jing
,
X.
,
2017
, “
Nonlinear Responses and Stability Analysis of Viscoelastic Nanoplate Resting on Elastic Matrix Under 3:1 Internal Resonances
,”
Int. J. Mech. Sci.
,
128–129
, pp.
94
104
.
28.
Li
,
F. M.
, and
Yao
,
G.
,
2013
, “
1/3 Subharmonic Resonance of a Nonlinear Composite Laminated Cylindrical Shell in Subsonic Air Flow
,”
Compos. Struct.
,
100
, pp.
249
256
.
29.
Xiong
,
L.-Y.
,
Zhang
,
G.-C.
,
Ding
,
H.
, and
Chen
,
L.-Q.
,
2014
, “
Nonlinear Forced Vibration of a Viscoelastic Buckled Beam With 2:1 Internal Resonance
,”
Math. Probl. Eng.
,
2014
, p.
906324
.
30.
Lewandowski
,
R.
,
1994
, “
Non-Linear Free Vibrations of Beams by the Finite Element and Continuation Methods
,”
J. Sound Vib.
,
170
(
5
), pp.
577
593
.
31.
Seydel
,
R.
,
1994
,
Practical Bifurcation and Stability Analysis: From Equilibrium to Chaos
,
Springer-Verlag
,
Berlin
.
32.
Lewandowski
,
R.
,
1991
, “
Non-Linear, Steady-State Analysis of Multispan Beams by the Finite Element Method
,”
Comput. Struct.
,
39
(
1–2
), pp.
83
93
.
33.
Lewandowski
,
R.
,
1993
,
Periodic Vibration of Geometrically Nonlinear Structures
,
Publishing House of Poznan University of Technology
, Poznaé, Poland (in Polish).
34.
Galucio
,
A. C.
,
Deü
,
J.-F.
, and
Ohayon
,
R.
,
2004
, “
Finite Element Formulation of Viscoelastic Sandwich Beams Using Fractional Derivative Operators
,”
Comput. Mech.
,
33
(
4
), pp.
282
291
.
35.
Nayfeh
,
A. H.
, and
Mook
,
D.
,
1979
,
Nonlinear Oscillations
,
Willey
,
New York
.
36.
Kerschen
,
G.
,
Peeters
,
M.
,
Golinval
,
J.-C.
, and
Vakakis
,
A. F.
,
2009
, “
Nonlinear Normal Modes—Part I: A Useful Framework for the Structural Dynamics
,”
Mech. Syst. Sign. Process.
,
23
(
1
), pp.
170
194
.
You do not currently have access to this content.