Abstract

The study performs a dynamic analysis of a microsegment gear system with respect to the time-varying stiffness, gear backlash, time-varying pressure angle, and comprehensive error. The period expansion method is proposed to construct a single-degree-of-freedom nonlinear dynamic model of a spur microsegment gear pair. To improve the accuracy of simulation results, the time-varying mesh stiffness and the time-varying pressure angle are expressed in terms of piecewise Fourier functions, respectively. The effect of mesh frequency, backlash, mesh damping, and input power on bifurcation, and chaos properties of the system are analyzed. The numerical results indicate that the system performs a chaotic motion after several frequency jumps as the mesh frequency increases. When the backlash increases, the frequency region of double-side impact and chaos tends to be decreased. The effect of mesh damping and input power on bifurcation characteristics is also investigated. The increase in mesh damping and input power can stabilize the system and avoid double-side impact. The results potentially present a useful source of reference for technicians and engineers for the dynamic design and vibration control of the aforementioned system with a nonconstant pressure angle.

References

1.
Radzevich
,
S. P.
, and
Dudley
,
D. W.
,
1994
,
Handbook of Practical Gear Design
,
CRC Press
,
Boca Ration, FL
.
2.
Hyatt
,
G.
,
Piber
,
M.
,
Chaphalkar
,
N.
,
Kleinhenz
,
O.
, and
Mori
,
M.
,
2014
, “
A Review of New Strategies for Gear Production
,”
Procedia CIRP
,
14
, pp.
72
76
.10.1016/j.procir.2014.03.034
3.
Ferreira
,
N.
,
Krah
,
T.
,
Jeong
,
D. C.
,
Metz
,
D.
,
Kniel
,
K.
,
Dietzel
,
A.
,
Büttgenbach
,
S.
, and
Härtig
,
F.
,
2014
, “
Integration of a Silicon-Based Microprobe Into a Gear Measuring Instrument for Accurate Measurement of Micro Gears
,”
Meas. Sci. Technol.
,
25
, p.
064016
.10.1088/0957-0233/25/6/064016
4.
Larsson
,
R.
,
1997
, “
Transient Non-Newtonian Elastohydrodynamic Lubrication Analysis of an Involute Spur Gear
,”
Wear
,
207
(
1–2
), pp.
67
73
.10.1016/S0043-1648(96)07484-4
5.
Jiang
,
Q. Y.
, and
Barber
,
G. C.
,
1999
, “
Modeling of Reaction Film Failure in Gear Lubrication
,”
Wear
,
231
(
1
), pp.
71
76
.10.1016/S0043-1648(99)00114-3
6.
Komori
,
T.
,
1988
, “
A New Gears Profile of Relative Curvature Being Zero at Many Contact Points
,”
Proceedings of International Conference on Gearing, Chinese Mechanical Engineering Society
, Vol.
1
,
Zhengzhou, China
, p.
39
.
7.
Komori
,
T.
,
Ariga
,
Y.
, and
Nagata
,
S.
,
1990
, “
A New Gears Profile Having Zero Relative Curvature at Many Contact Points (LogiX Tooth Profile)
,”
ASME J. Mech. Des.
,
112
(
3
), pp.
430
436
.10.1115/1.2912626
8.
Zhao
,
H.
,
Liang
,
J.
, and
Liu
,
H.
,
1997
, “
Constructing Principle and Features of Tooth Profiles With Micro-Segments
,”
Chin. J. Mech. Eng
.,
33
(
5
), pp.
7
11
.http://www.cnki.com.cn/Article/CJFDTotal-JXXB705.001.htm
9.
Liu
,
H.
,
Zhao
,
H.
, and
Liang
,
J.
,
2003
, “
Analysis of Durability and Inflexion Strength of Micro-Segment Gears
,”
J. Univ. Shanghai Sci. Technol.
,
25
(
3
), pp.
277
280
.10.3969/j.issn.1007-6735.2003.03.018
10.
Huang
,
K.
,
Zhao
,
H.
, and
Jiang
,
X.
,
2002
, “
Comparison Test Research on Transmission Efficiency Between Micro-Segment Gears and Involute Gears
,”
J. Mech. Strength
,
26
(
4
), pp.
3
6
.
11.
Huang
,
K.
,
Zhao
,
H.
, and
Tian
,
J.
,
2006
, “
Experimental Research on Temperature Rise Comparison Between Micro-Segment Gears and Involute Gears
,”
China Mech. Eng.
,
17
(
18
), pp.
1880
1883
.10.3321/j.issn:1004-132X.2006.18.003
12.
Huang
,
K.
,
Zhao
,
H.
, and
Wang
,
W.
,
2000
, “
Mull-Object Optimum Design of Tooth Profile With Micro-Segment Gear Hobs
,”
J. Mech. Trans.
,
24
(
4
), pp.
6
7
.10.3969/j.issn.1004-2539.2000.04.003
13.
Chen
,
Q.
,
Zhao
,
H.
, and
Huang
,
K.
,
2011
, “
Study on Calculation of Transmission Efficiency About the Micro-Segment Gear
,”
China Mech. Eng.
,
22
(
13
), pp.
1537
1539
.
14.
Zhao
,
H.
,
Huang
,
K.
, and
Ding
,
S.
,
2003
, “
Comparison Test Research on Bending Stress of the Micro-Segment Gear
,”
J. Mech. Strength
,
25
(
1
), pp.
110
112
.10.3321/j.issn:1001-9669.2003.01.028
15.
Kahraman
,
A.
, and
Blankenship
,
G. W.
,
1997
, “
Experiments on Nonlinear Dynamic Behavior of an Oscillator With Clearance and Periodically Time-Varying Parameters
,”
ASME J. Appl. Mech.
,
64
(
1
), pp.
217
226
.10.1115/1.2787276
16.
Kahraman
,
A.
, and
Singh
,
R.
,
1990
, “
Non-Linear Dynamics of a Spur Gear Pair
,”
J. Sound Vib.
,
142
(
1
), pp.
49
75
.10.1016/0022-460X(90)90582-K
17.
Kahraman
,
A.
, and
Singh
,
R.
,
1991
, “
Interactions Between Time-Varying Mesh Stiffness and Clearance Non-Linearities in a Geared System
,”
J. Sound Vib.
,
146
(
1
), pp.
135
156
.10.1016/0022-460X(91)90527-Q
18.
Özgüven
,
H. N.
,
1991
, “
A Non-Linear Mathematical Model for Dynamic Analysis of Spur Gears Including Shaft and Bearing Dynamics
,”
J. Sound Vib.
,
145
(
2
), pp.
239
260
.10.1016/0022-460X(91)90590-G
19.
Blankenship
,
G. W.
, and
Kahraman
,
A.
,
1995
, “
Steady State Forced Response of a Mechanical Oscillator With Combined Parametric Excitation and Clearance Type Non-Linearity
,”
J. Sound Vib.
,
185
(
5
), pp.
743
765
.10.1006/jsvi.1995.0416
20.
Kahraman
,
A.
, and
Blankenship
,
G. W.
,
1999
, “
Effect of Involute Contact Ratio on Spur Gear Dynamics
,”
ASME J. Mech. Des.
,
121
(
1
), pp.
112
118
.10.1115/1.2829411
21.
Parker
,
R. G.
,
Vijayakar
,
S. M.
, and
Imajo
,
T.
,
2000
, “
Non-Linear Dynamic Response of a Spur Gear Pair: Modelling and Experimental Comparisons
,”
J. Sound Vib.
,
237
(
3
), pp.
435
455
.10.1006/jsvi.2000.3067
22.
Hortel
,
M.
, and
Škuderová
,
A.
,
2007
, “Bifurcation Phenomena in Internal Dynamics of Gear Systems,”
Appl. Comput. Mech
., 1, pp.
53
62
.https://otik.uk.zcu.cz/bitstream/11025/1825/1/acm_vol1no1_p007.pdf
23.
Brancati
,
R.
,
Montanaro
,
U.
,
Rocca
,
E.
,
Santini
,
S.
, and
Timpone
,
F.
,
2013
, “Analysis of Bifurcations, Rattle and Chaos in a Gear Transmission System,”
Int. Rev. Mech. Eng
., 7(4), pp.
583
591
.https://www.praiseworthyprize.org/jsm/?journal=ireme
24.
Łuczko
,
J.
,
2008
, “
Chaotic Vibrations in Gear Mesh Systems
,”
J. Theor. Appl. Mech.
,
46
(
4
), pp.
879
896
.http://ptmts.org.pl/Luczko-4-08.pdf
25.
Xiang
,
L.
,
Jia
,
Y.
, and
Hu
,
A.
,
2016
, “
Bifurcation and Chaos Analysis for Multi-Freedom Gear-Bearing System With Time-Varying Stiffness
,”
Appl. Math. Modell.
,
40
(
23–24
), pp.
10506
10520
.10.1016/j.apm.2016.07.016
26.
Gou
,
X. F.
,
Zhu
,
L. Y.
, and
Chen
,
D. L.
,
2015
, “
Bifurcation and Chaos Analysis of Spur Gear Pair in Two-Parameter Plane
,”
Nonlinear Dyn.
,
79
(
3
), pp.
2225
2235
.10.1007/s11071-014-1807-1
27.
Farshidianfar
,
A.
, and
Saghafi
,
A.
,
2014
, “
Global Bifurcation and Chaos Analysis in Nonlinear Vibration of Spur Gear Systems
,”
Nonlinear Dyn.
,
75
(
4
), pp.
783
806
.10.1007/s11071-013-1104-4
28.
Guo
,
Y.
, and
Parker
,
R. G.
,
2012
, “
Dynamic Analysis of Planetary Gears With Bearing Clearance
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
4
), p.
041002
.10.1115/1.4005929
29.
Wang
,
J.
,
He
,
G.
,
Zhang
,
J.
,
Zhao
,
Y.
, and
Yao
,
Y.
,
2017
, “
Nonlinear Dynamics Analysis of the Spur Gear System for Railway Locomotive
,”
Mech. Syst. Signal Process.
,
85
, pp.
41
55
.10.1016/j.ymssp.2016.08.004
30.
Wang
,
J.
,
Lv
,
B.
, and
Zhao
,
Y.
,
2018
, “
Chaos and Stability of Spur Gear Transmission System for Locomotive Based on Energy Method and Floquet Theory
,”
Shock Vib.
,
2018
, p.
5691892
.10.1155/2018/5691892
31.
Saxena
,
A.
,
Chouksey
,
M.
, and
Parey
,
A.
,
2017
, “
Effect of Mesh Stiffness of Healthy and Cracked Gear Tooth on Modal and Frequency Response Characteristics of Geared Rotor System
,”
Mech. Mach. Theory
,
107
, pp.
261
273
.10.1016/j.mechmachtheory.2016.10.006
32.
Li
,
Z.
, and
Peng
,
Z.
,
2016
, “
Nonlinear Dynamic Response of a Multi-Degree of Freedom Gear System Dynamic Model Coupled With Tooth Surface Characters: A Case Study on Coal Cutters
,”
Nonlinear Dyn.
,
84
(
1
), pp.
271
286
.10.1007/s11071-015-2475-5
33.
Yu
,
W.
,
Mechefske
,
C. K.
, and
Timusk
,
M.
,
2018
, “
A New Dynamic Model of a Cylindrical Gear Pair With Localized Spalling Defects
,”
Nonlinear Dyn.
,
91
(
4
), pp.
2077
2095
.10.1007/s11071-017-4003-2
34.
Yu
,
W.
,
Mechefske
,
C. K.
, and
Timusk
,
M.
,
2017
, “
Effects of Tooth Plastic Inclination Deformation Due to Spatial Cracks on the Dynamic Features of a Gear System
,”
Nonlinear Dyn.
,
87
(
4
), pp.
2643
2659
.10.1007/s11071-016-3218-y
35.
Huang
,
K.
, and
Xiong
,
Y.
,
2016
, “
Bifurcation and Chaos Characteristic Analysis of Spur Micro-Segment Gear Pair
,”
J. Vibroeng.
,
18
(
7
), pp.
4792
4811
.10.21595/jve.2016.17129
36.
Chaari
,
F.
,
Fakhfakh
,
T.
, and
Haddar
,
M.
,
2009
, “
Analytical Modelling of Spur Gear Tooth Crack and Influence on Gear Mesh Stiffness
,”
Eur. J. Mech.-A/Solids
,
28
(
3
), pp.
461
468
.10.1016/j.euromechsol.2008.07.007
37.
Sainsot
,
P.
,
Velex
,
P.
, and
Duverger
,
O.
,
2004
, “
Contribution of Gear Body to Tooth Deflections—a New Bidimensional Analytical Formula
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
748
752
.10.1115/1.1758252
38.
Yang
,
D. C. H.
, and
Sun
,
Z. S.
,
1985
, “
A Rotary Model for Spur Gear Dynamics
,”
J. Mech. Trans. Autom. Des.
,
107
(
4
), pp.
529
535
.10.1115/1.3260759
You do not currently have access to this content.