Our paper presents a new method to solve a class of fractional optimal control problems (FOCPs) based on the numerical polynomial approximation. In the proposed method, the fractional derivative in the dynamical system is considered in the Caputo sense. The approach used here is to approximate the state function by the Legendre orthonormal basis by using the Ritz method. Next, we apply a new constructed operational matrix to approximate fractional derivative of the basis. After transforming the problem into a system of algebraic equations, the problem is solved via the Newton's iterative method. Finally, the convergence of the new method is investigated and some examples are included to illustrate the effectiveness and applicability of the proposed methodology.

References

1.
Das
,
S.
,
2008
,
Functional Fractional Calculus for System Identification and Controls
,
Springer
,
New York
.
2.
Benson
,
D. A.
,
Meerschaert
,
M. M.
, and
Revielle
,
J.
,
2013
, “
Fractional Calculus in Hydrologic Modeling: A Numerical Perspective
,”
Adv. Water Resour.
,
51
, pp.
479
497
.
3.
Zamani
,
M.
,
Karimi-Ghartemani
,
M.
, and
Sadati
,
N.
,
2007
, “
Fopid Controller Design for Robust Performance Using Particle Swarm Optimization
,”
Fract. Calculus Appl. Anal.
,
10
(2), pp.
169
187
.
4.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
,
Theory and Applications of Fractional Differential Equations
,
North Holland Mathematics Studies, Elsevier Science B. V.
,
Amsterdam, The Netherlands
.
5.
Biswas
,
R. K.
, and
Sen
,
S.
,
2011
, “
Fractional Optimal Control Problems With Specified Final Time
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
2
) p.
021009
.
6.
Mehedi
,
H. M.
,
Agrawal
,
O. P.
, and
Tangpong
,
X. W.
,
2012
, “
A Numerical Scheme for a Class of Parametric Problem of Fractional Variational Calculus
,”
ASME J. Comput. Nonlinear Dyn.
,
7
, pp.
21
25
.
7.
Lotfi
,
A.
, and
Yousefi
,
S. A.
,
2013
, “
A Numerical Technique for Solving a Class of Fractional Variational Problems
,”
J. Comput. Appl. Math.
,
237
(
1
), pp.
633
643
.
8.
Malinowska
,
A. B.
, and
Torres
,
D. F. M.
,
2012
,
Introduction to the Fractional Calculus of Variations
,
Imperial College Press
,
London
.
9.
Almeida
,
R.
, and
Torres
,
D. F. M.
,
2011
, “
Necessary and Sufficient Conditions for the Fractional Calculus of Variations With Caputo Derivatives
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
3
), pp.
1490
1500
.
10.
Malinowska
,
A. B.
,
Almeida
,
R.
, and
Torres
,
D. F. M.
,
2010
, “
A Fractional Calculus of Variations for Multiple Integrals With Application to Vibrating String
,”
J. Math. Phys.
,
51
, p.
33503
.
11.
Agrawal
,
O. P.
,
2004
, “
A General Formulation and Solution Scheme for Fractional Optimal Control Problems
,”
Nonlinear Dyn.
,
38
(1), pp.
323
337
.
12.
Agrawal
,
O. P.
, and
Baleanu
,
D.
,
2007
, “
A Hamiltonian Formulation and a Direct Numerical Scheme for Fractional Optimal Control Problems
,”
J. Vib. Control
,
13
(9–10), pp.
1269
1281
.
13.
Agrawal
,
O. P.
,
2008
, “
A Formulation and Numerical Scheme for Fractional Optimal Control Problems
,”
J. Vib. Control
,
14
(9–10), pp.
1291
1299
.
14.
Baleanu
,
D.
, and
Trujillo
,
J. I.
,
2010
, “
A New Method of Finding the Fractional Euler-Lagrange and Hamilton Equations Within Caputo Fractional Derivatives
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
5
), pp.
1111
1115
.
15.
Almeida
,
R.
, and
Torres
,
D. F. M.
,
2009
, “
Calculus of Variations With Fractional Derivatives and Fractional Integrals
,”
Appl. Math. Lett.
,
22
(
12
), pp.
1816
1820
.
16.
Khosravian-Araba
,
H.
, and
Almeidab
,
R.
,
2015
, “
Numerical Solution for Fractional Variational Problems Using the Jacobi Polynomials
,”
Appl. Math. Modell.
,
39
(
21
), pp.
6461
6470
.
17.
Agrawal
,
O. P.
,
2006
, “
Fractional Variational Calculus and the Transversality Conditions
,”
J. Phys. A: Math. Gen.
,
39
(
33
), p.
10375
.
18.
Malekia
,
M.
,
Hashima
,
I.
,
Abbasbandy
,
S.
, and
Alsaedi
,
A.
,
2015
, “
Direct Solution of a Type of Constrained Fractional Variational Problems Via an Adaptive Pseudospectral Method
,”
J. Comput. Appl. Math.
,
283
, pp.
41
57
.
19.
Defterli
,
O.
,
Baleanu
,
D.
, and
Agrawal
,
O. M. P.
,
2009
, “
A Central Difference Numerical Scheme for Fractional Optimal Control Problems
,”
J. Vib. Control
,
15
, pp.
583
597
.
20.
Lotfi
,
A.
,
Yousefi
,
S. A.
, and
Dehghan
,
M.
,
2011
, “
The Use of a Legendre Multiwavelet Collocation Method for Solving the Fractional Optimal Control Problems
,”
J. Vib. Control
,
17
, pp.
2059
2065
.
21.
Elsgolts
,
L.
,
1977
,
Differential Equations and Calculus of Variations
,
Mir
,
Moscow, Russia
, (translated from the Russian by G. Yankovsky).
22.
Mao
,
Z.
,
Xiao
,
A.
,
Wang
,
D.
,
Yu
,
Z.
, and
Shi
,
L.
,
2015
, “
Exponentially Accurate Rayleigh–Ritz Method for Fractional Variational Problems
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p. 051009.
23.
Khader
,
M. M.
,
2014
, “
An Efficient Approximate Method for Solving Fractional Variational Problems
,”
Appl. Math. Modell.
,
39
(5–6), pp.
1643
1649
.
24.
Doha
,
E. H.
,
Bhrawy
,
A. H.
, and
Ezz-Eldien
,
S. S.
,
2011
, “
A Chebyshev Spectral Method Based on Operational Matrix for Initial and Boundary Value Problems of Fractional Order
,”
Comput. Math. Appl.
,
62
(
5
), pp.
2364
2373
.
25.
Lakestani
,
M.
,
Dehghan
,
M.
, and
Irandoust-Pakchin
,
S.
,
2012
, “
The Construction of Operational Matrix of Fractional Derivatives Using B-Spline Functions
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
3
), pp.
1149
1162
.
26.
Saadatmandi
,
A.
, and
Dehghan
,
M.
,
2010
, “
A New Operational Matrix for Solving Fractional-Order Differential Equations
,”
Comput. Math. Appl.
,
59
(
3
), pp.
1326
1336
.
27.
Saadatmandi
,
A.
, and
Dehghan
,
M.
,
2011
, “
A Tau Approach for Solution of the Space Fractional Diffusion Equation
,”
Comput. Math. Appl.
,
62
(
3
), pp.
1135
1142
.
28.
Saadatmandi
,
A.
,
2011
, “
Bernstein Operational Matrix of Fractional Derivatives and It's Applications
,”
Appl. Math. Modell.
,
38
, pp.
1365
1372
.
29.
Yousefi
,
S. A.
,
Lotfi
,
A.
, and
Dehghan
,
M.
,
2013
, “
Numerical Solution of a Class of Fractional Optimal Control Problems Via the Legendre Orthonormal Basis Combined With the Operational Matrix and the Gauss Quadrature Rule
,”
J. Comput. Appl. Math.
,
250
, pp.
143
160
.
30.
Lotfi
,
A.
,
Dehghan
,
M.
, and
Yousefi
,
S. A.
,
2011
, “
A Numerical Technique for Solving Fractional Optimal Control Problems
,”
Comput. Math. Appl.
,
62
(
3
), pp.
1055
1067
.
31.
Kreyszig
,
E.
,
1978
,
Introductory Functional Analysis With Applications
,
Wiley
, New York.
32.
Rivlin
,
T. J.
,
1981
,
An Introduction to the Approximation of Function
,
Dover Publication
, New York.
You do not currently have access to this content.