Abstract

In the study, a novel fuzzy generalized predictive control (GPC) scheme is proposed for the stability control of nonlinear brushless DC motor (BLDCM). First, the fuzzy predictive model of BLDCM is presented via Takagi–Sugeno fuzzy model. Then, based on the controlled autoregressive moving average (CARMA) model transformed by Takagi–Sugeno fuzzy model of BLDCM, a new fuzzy GPC scheme for the nonlinear BLDCM is designed by combining fuzzy techniques and GPC theory, and the rigorous mathematical derivation is given. Finally, numerical simulations are implemented to verify the effectiveness and superiority of the proposed scheme. It also provides reference for other nonlinear even chaos control in actual project.

References

1.
Wei
,
D. Q.
,
Luo
,
X. S.
, and
Zhang
,
B.
,
2012
, “
Synchronization of Brushless DC Motors Based on LaSalle Invariance Principle
,”
Nonlinear Dyn.
,
69
(
4
), pp.
1733
1738
.
2.
Maetani
,
T.
,
Isomura
,
Y.
,
Watanabe
,
A.
,
Iimori
,
K.
, and
Morimoto
,
S.
,
2013
, “
Suppressing Bearing Voltage in an Inverter-Fed Ungrounded Brushless DC Motor
,”
IEEE Trans. Ind. Electron.
,
60
(
11
), pp.
4861
4868
.
3.
Lee
,
D. H.
, and
Ahn
,
J. W.
,
2009
, “
A Current Ripple Reduction of a High-Speed Miniature Brushless Direct Current Motor Using Instantaneous Voltage Control
,”
IET Electr. Power Appl.
,
3
(
2
), pp.
85
92
.
4.
Chen
,
C. F.
, and
Cheng
,
M. Y.
,
2007
, “
Implementation of a Highly Reliable Hybrid Electric Scooter Drive
,”
IEEE Trans. Ind. Electron.
,
54
(
5
), pp.
2462
2473
.
5.
Park
,
J. D.
,
Kalev
,
C.
, and
Hofmann
,
H. F.
,
2008
, “
Control of High-Speed Solid-Rotor Synchronous Reluctance Motor/Generator for Flywheel-Based Uninterruptible Power Supplies
,”
IEEE Trans. Ind. Electron.
,
55
(
8
), pp.
3038
3046
.
6.
Hemati
,
N.
, and
Leu
,
M. C.
,
1992
, “
A Complete Model Characterization of Brushless DC Motors
,”
IEEE Trans. Ind. Appl.
,
28
(
1
), pp.
172
180
.
7.
Hemati
,
N.
,
1994
, “
Strange Attractors in Brushless DC Motor
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
,
41
(
1
), pp.
40
45
.
8.
Chen
,
J. H.
,
Chau
,
K. T.
, and
Chan
,
C. C.
,
2000
, “
Analysis of Chaos in Current-Mode-Controlled DC Drive Systems
,”
IEEE Trans. Ind. Electron.
,
47
(
1
), pp.
67
76
.
9.
Ott
,
E.
,
Grebogi
,
C.
, and
York
,
J. A.
,
1990
, “
Controlling Chaos
,”
Phys. Rev. Lett.
,
64
(
11
), pp.
1196
1199
.
10.
Aghababa
,
M.
,
2013
, “
Design of a Chatter-Free Terminal Sliding Mode Controller for Nonlinear Fractional-Order Dynamical Systems
,”
Int. J. Control
,
86
(
10
), pp.
1744
1756
.
11.
Pan
,
H. H.
,
Sun
,
W. C.
,
Gao
,
H. J.
,
Kaynak
,
O.
,
Alsaadi
,
F.
, and
Hayat
,
T.
,
2015
, “
Robust Adaptive Control of Non-Linear Time-Delay Systems With Saturation Constraints
,”
IET Control Theory Appl.
,
9
(
1
), pp.
103
113
.
12.
Zhang
,
R. X.
, and
Yang
,
S. P.
,
2013
, “
Robust Synchronization of Two DifferentFractional-Order Chaotic Systems With Unknown Parameters Using Adaptive Sliding Mode Approach
,”
Nonlinear Dyn.
,
71
(
1–2
), pp.
269
278
.
13.
Ge
,
Z. M.
,
Chang
,
C. M.
, and
Chen
,
Y. S.
,
2006
, “
Anti-Control of Chaos of Single Time Scale Brushless dc Motors and Chaos Synchronization of Different Order System
,”
Chaos, Solitons Fractals
,
27
(
5
), pp.
1298
1315
.
14.
Wei
,
D. Q.
,
Wan
,
L.
,
Luo
,
X. S.
,
Zeng
,
S. Y.
, and
Zhang
,
B.
,
2014
, “
Global Exponential Stabilization for Chaotic Brushless DC Motors With a Single Input
,”
Nonlinear Dyn.
,
77
(
1–2
), pp.
209
212
.
15.
Richalet
,
J.
,
Rault
,
A.
,
Testud
,
J. L.
, and
Papon
,
J.
,
1978
, “
Model Predictive Heuristic Control: Applications to Industrial Processes
,”
Automatica
,
14
(
5
), pp.
413
428
.
16.
Rhouma
,
A.
,
Bouani
,
F.
,
Bouzouita
,
B.
, and
Ksouri
,
M.
,
2014
, “
Model Predictive Control of Fractional Order Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
3
), p.
031011
.
17.
Korda
,
M.
,
Gondhalekar
,
R.
,
Oldewurtel
,
F.
, and
Jones
,
C. N.
,
2014
, “
Stochastic MPC Framework for Controlling the Average Constraint Violation
,”
IEEE Trans. Autom. Control
,
59
(
7
), pp.
1706
1721
.
18.
Prior
,
G.
, and
Krstic
,
M.
,
2015
, “
A Control Lyapunov Approach to Finite Control Set Model Predictive Control for Permanent Magnet Synchronous Motors
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
1
), p.
011001
.
19.
Alkorta
,
P.
,
Barambones
,
O.
,
Cortajarena
,
J. A.
, and
Zubizarrreta
,
A.
,
2014
, “
Efficient Multivariable Generalized Predictive Control for Sensorless Induction Motor Drives
,”
IEEE Trans. Ind. Electron.
,
61
(
9
), pp.
5126
5134
.
20.
Sarhadi
,
P.
,
Salahshoor
,
K.
, and
Khaki-Sedigh
,
A.
,
2012
, “
Robustness Analysis and Tuning of Generalized Predictive Control Using Frequency Domain Approaches
,”
Appl. Math. Modell.
,
36
(
12
), pp.
6167
6185
.
21.
Faudzi
,
A. A. M.
,
Mustafa
,
N. D.
, and
Osman
,
K.
,
2014
, “
Force Control for a Pneumatic Cylinder Using Generalized Predictive Controller Approach
,”
Math. Probl. Eng.
,
2014
, p.
261829
.
22.
Wang
,
Y.
,
Chai
,
T.
,
Fu
,
J.
,
Zhang
,
Y.
, and
Fu
,
Y.
,
2012
, “
Adaptive Decoupling Switching Control Based on Generalised Predictive Control
,”
IET Control Theory Appl.
,
6
(
12
), pp.
1828
1841
.
23.
Gao
,
Q.
,
Liu
,
L.
,
Feng
,
G.
,
Wang
,
Y.
, and
Qiu
,
J. B.
,
2014
, “
Universal Fuzzy Integral Sliding-Mode Controllers Based on T-S Fuzzy Models
,”
IEEE Trans. Fuzzy Syst.
,
22
(
2
), pp.
350
362
.
24.
Chen
,
D. Y.
,
Zhao
,
W. L.
,
Sprott
,
J. C.
, and
Ma
,
X. Y.
,
2013
, “
Application of Takagi-Sugeno Fuzzy Model to a Class of Chaotic Synchronization and Anti-Synchronization
,”
Nonlinear Dyn.
,
73
(
3
), pp.
1495
1505
.
25.
Defoy
,
B.
,
Alban
,
T.
, and
Mahfoud
,
J.
,
2014
, “
Assessment of the Effectiveness of a Polar Fuzzy Approach for the Control of Centrifugal Compressors
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
4
), p.
041004
.
26.
Zhang
,
G.
,
Li
,
J. M.
, and
Ge
,
Y. W.
,
2014
, “
Nonfragile Guaranteed Cost Control of Discrete-Time Fuzzy Bilinear System With Time-Delay
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
4
), p.
044502
.
27.
Wang
,
B.
,
Xue
,
J. Y.
,
He
,
H. Y.
, and
Zhu
,
D. L.
,
2014
, “
Analysis on a Class of Double-Wing Chaotic System and Its Control Via Linear Matrix Inequality
,”
Acta Phys. Sin.
,
63
(
21
), p.
210502
.
28.
Su
,
X. J.
,
Shi
,
P.
,
Wu
,
L. G.
, and
Song
,
Y. D.
,
2013
, “
A Novel Control Design on Discrete-Time Takagi-Sugeno Fuzzy Systems With Time-Varying Delays
,”
IEEE Trans. Fuzzy Syst.
,
21
(
4
), pp.
655
671
.
29.
Wang
,
B.
,
Xue
,
J. Y.
, and
Chen
,
D. Y.
,
2014
, “
Takagi-Sugeno Fuzzy Control for a Wide Class of Fractional-Order Chaotic Systems With Uncertain Parameters Via Linear Matrix Inequality
,”
J. Vib. Control
(published online).
30.
Wang
,
B.
,
Zhang
,
J. W.
,
Zhu
,
D. L.
, and
Chen
,
D. Y.
,
2015
, “
Takagi-Sugeno Fuzzy Predictive Control for a Class of Nonlinear System With Constrains and Disturbances
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
054505
.
31.
Terki
,
A.
,
Moussi
,
A.
,
Betka
,
A.
, and
Terki
,
N.
,
2012
, “
An Improved Efficiency of Fuzzy Logic Control of PMBLDC for PV Pumping System
,”
Appl. Math. Modell.
,
36
(
3
), pp.
934
944
.
32.
Premkumar
,
K.
, and
Manikandan
,
B. V.
,
2014
, “
Adaptive Neuro-Fuzzy Inference System Based Speed Controller for Brushless DC Motor
,”
Neurocomputing
,
138
, pp.
260
270
.
33.
Premkumar
,
K.
, and
Manikandan
,
B. V.
,
2015
, “
Fuzzy PID Supervised Online ANFIS Based Speed Controller for Brushless DC Motor
,”
Neurocomputing
,
157
, pp.
76
90
.
You do not currently have access to this content.