This paper is concerned with the control of underactuated systems with external disturbances. Using the global sliding mode control (GSMC) technique, a new robust controller is presented to improve the robustness and stability of the system. The conditions of asymptotic stability are presented by linear matrix inequalities (LMIs). Our purpose is to build a control law so that it would enforce the states of the system to exponentially verge the sliding surface. The suggested controller has a simple structure because it is derived from the associated first-order differential equation and is able to handle the external disturbances and system nonlinearities. The efficiency of the proposed scheme is observed through simulations in an illustrative example. Simulation results demonstrate the considerable performance of the suggested technique.

References

1.
Xu
,
R.
, and
Özgüner
,
Ü.
,
2008
, “
Sliding Mode Control of a Class of Underactuated Systems
,”
Automatica
,
44
(
1
), pp.
233
241
.
2.
Mobayen
,
S.
,
2014
, “
An LMI-Based Robust Controller Design Using Global Nonlinear Sliding Surfaces and Application to Chaotic Systems
,”
Nonlinear Dyn.
,
79
(
2
), pp.
1075
1084
.
3.
Panagou
,
D.
, and
Kyriakopoulos
,
K. J.
,
2013
, “
Viability Control for a Class of Underactuated Systems
,”
Automatica
,
49
(
1
), pp.
17
29
.
4.
Mobayen
,
S.
, “
Design of LMI-Based Sliding Mode Controller With an Exponential Policy for a Class of Under-Actuated Systems
,”
Complexity
(in press).
5.
Oryschuk
,
P.
,
Salerno
,
A.
,
Al-Husseini
,
A. M.
, and
Angeles
,
J.
,
2009
, “
Experimental Validation of an Underactuated Two-Wheeled Mobile Robot
,”
IEEE/ASME Trans. Mechatronics
,
14
(
2
), pp.
252
257
.
6.
Woods
,
S.
,
Bauer
,
R.
, and
Seto
,
M.
,
2012
, “
Automated Ballast Tank Control System for Autonomous Underwater Vehicles
,”
IEEE J. Ocean. Eng.
,
37
(
4
), pp.
727
739
.
7.
Hattori
,
M.
, and
Yabuno
,
H.
,
2008
, “
Reachable Area of an Underactuated Space Manipulator Subjected to Simple Spinning
,”
Nonlinear Dyn.
,
51
(
1–2
), pp.
345
353
.
8.
He
,
G. P.
, and
Lu
,
Z.
,
2005
, “
Nonlinear Dynamic Analysis of Planar Flexible Underactuated Manipulators
,”
Chin. J. Aeronaut.
,
18
(
1
), pp.
78
82
.
9.
Olfati-Saber
,
R.
,
2002
, “
Normal Forms for Underactuated Mechanical Systems With Symmetry
,”
IEEE Trans. Autom. Control
,
47
(
2
), pp.
305
308
.
10.
Yu
,
R.
,
Zhu
,
Q.
,
Xia
,
G.
, and
Liu
,
Z.
,
2012
, “
Sliding Mode Tracking Control of an Underactuated Surface Vessel
,”
IET Control Theory Appl.
,
6
(
3
), pp.
461
466
.
11.
Mobayen
,
S.
,
2014
, “
Design of CNF-Based Nonlinear Integral Sliding Surface for Matched Uncertain Linear Systems With Multiple State-Delays
,”
Nonlinear Dyn.
,
77
(
3
), pp.
1047
1054
.
12.
Feng
,
Y.
,
Han
,
F.
, and
Yu
,
X.
,
2014
, “
Chattering Free Full-Order Sliding-Mode Control
,”
Automatica
,
50
(
4
), pp.
1310
1314
.
13.
Delprat
,
S.
, and
Loza
,
A. F.
,
2014
, “
High Order Sliding Mode Control for Hybrid Vehicle Stability
,”
Int. J. Syst. Sci.
,
45
(
5
), pp.
1202
1212
.
14.
Estrada
,
A.
,
Loria
,
A.
,
Santiesteban
,
R.
, and
Fridman
,
L.
,
2013
, “
Cascaded-Based Stabilization of Time-Varying Systems Using Second-Order Sliding Modes
,”
IMA J. Math. Control Inf.
,
30
(
1
), pp.
115
128
.
15.
Yoshimura
,
T.
,
2013
, “
Discrete-Time Adaptive Sliding Mode Control for Uncertain Systems Based on Multi-Rate Output Measurement
,”
Int. J. Syst. Sci.
,
44
(
9
), pp.
1733
1744
.
16.
Mobayen
,
S.
, “
Design of LMI-Based Global Sliding Mode Controller for Uncertain Nonlinear Systems With Application to Genesio's Chaotic System
,”
Complexity
(in press).
17.
Rao
,
D. V.
, and
Sinha
,
N. K.
,
2013
, “
A Sliding Mode Controller for Aircraft Simulated Entry Into Spin
,”
Aerosp. Sci. Technol.
,
28
(
1
), pp.
154
163
.
18.
Wang
,
Y.
,
Zhang
,
X.
,
Yuan
,
X.
, and
Liu
,
G.
,
2011
, “
Position-Sensorless Hybrid Sliding-Mode Control of Electric Vehicles With Brushless DC Motor
,”
IEEE Trans. Veh. Technol.
,
60
(
2
), pp.
421
432
.
19.
Saoudi
,
K.
, and
Harmas
,
M. N.
,
2014
, “
Enhanced Design of an Indirect Adaptive Fuzzy Sliding Mode Power System Stabilizer for Multi-Machine Power Systems
,”
Int. J. Electr. Power Energy Syst.
,
54
, pp.
425
431
.
20.
Zhang
,
X.
,
Liu
,
X.
, and
Zhu
,
Q.
,
2014
, “
Adaptive Chatter Free Sliding Mode Control for a Class of Uncertain Chaotic Systems
,”
Appl. Math. Comput.
,
232
, pp.
431
435
.
21.
Corradini
,
M. L.
, and
Orlando
,
G.
,
2014
, “
A Robust Observer-Based Fault Tolerant Control Scheme for Underwater Vehicles
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
3
), p.
034504
.
22.
Hu
,
Q.
, and
Xiao
,
B.
,
2013
, “
Adaptive Fault Tolerant Control Using Integral Sliding Mode Strategy With Application to Flexible Spacecraft
,”
Int. J. Syst. Sci.
,
44
(
12
), pp.
2273
2286
.
23.
Mobayen
,
S.
, “
Finite-Time Robust-Tracking and Model-Following Controller for Uncertain Dynamical Systems
,”
J. Vib. Control.
(in press).
24.
Efimov
,
D.
, and
Fridman
,
L.
,
2011
, “
Global Sliding-Mode Observer With Adjusted Gains for Locally Lipschitz Systems
,”
Automatica
,
47
(
3
), pp.
565
570
.
25.
Peixoto
,
A. J.
,
Oliveira
,
T. R.
,
Hsu
,
L.
,
Lizarralde
,
F.
, and
Costa
,
R. R.
,
2011
, “
Global Tracking Sliding Mode Control for a Class of Nonlinear Systems Via Variable Gain Observer
,”
Int. J. Robust Nonlinear Control
,
21
(
2
), pp.
177
196
.
26.
Chen
,
F.
,
Jiang
,
R.
,
Wen
,
C.
, and
Su
,
R.
,
2015
, “
Self-Repairing Control of a Helicopter With Input Time Delay Via Adaptive Global Sliding Mode Control and Quantum Logic
,”
Inform. Sci.
,
316
, pp.
123
131
.
27.
Zhong
,
T.
,
Yuanwei
,
J.
,
Chengyin
,
Y.
, and
Nan
,
J.
,
2014
, “
Global Sliding Mode Control Based on Observer for TCP Network
,”
26th Chinese Control and Decision Conference
(
2014 CCDC
),
Changsha, China
, May 31–June 2, pp.
4946
4950
.
28.
Liu
,
L.
,
Han
,
Z.
, and
Li
,
W.
,
2009
, “
Global Sliding Mode Control and Application in Chaotic Systems
,”
Nonlinear Dyn.
,
56
(
1–2
), pp.
193
198
.
29.
Chu
,
Y.
, and
Fei
,
J.
,
2015
, “
Adaptive Global Sliding Mode Control for MEMS Gyroscope Using RBF Neural Network
,”
Math. Prob. Eng.
,
2015
, p.
403180
.
30.
Juang
,
J. C.
, and
Lee
,
C. M.
,
2005
, “
Design of Sliding Mode Controllers With Bounded L2 Gain Performance: An LMI Approach
,”
Int. J. Control
,
78
(
9
), pp.
647
661
.
31.
Mobayen
,
S.
,
Majd
,
V. J.
, and
Sojoodi
,
M.
,
2012
, “
An LMI-Based Composite Nonlinear Feedback Terminal Sliding-Mode Controller Design for Disturbed MIMO Systems
,”
Math. Comp. Simul.
,
85
, pp.
1
10
.
32.
Petres
,
Z.
,
Baranyi
,
P.
, and
Hashimoto
,
H.
,
2010
, “
Approximation and Complexity Trade-Off by TP Model Transformation in Controller Design: A Case Study of the TORA System
,”
Asian J. Control
,
12
(
5
), pp.
575
585
.
You do not currently have access to this content.