In this paper, a new type of chaos synchronization in discrete-time is proposed by combining matrix projective synchronization (MPS) and generalized synchronization (GS). This new chaos synchronization type allows us to study synchronization between different dimensional discrete-time chaotic systems in different dimensions. Based on nonlinear controllers and Lyapunov stability theory, effective control schemes are introduced and new synchronization criterions are derived. Numerical simulations are used to validate the theoretical results and to verify the effectiveness of the proposed schemes.

References

1.
Strogatz
,
S. H.
,
2001
, “
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
,”
Studies in Nonlinearity
,
Westview Press
, Boulder.
2.
Chen
,
G. R.
, and
Yu
,
X. H.
,
2003
,
Chaos Control: Theory and Applications
,
Springer
,
Berlin
.
3.
Blasius
,
B.
, and
Stone
,
L.
,
2000
, “
Chaos and Phase Synchronization in Ecological Systems
,”
Int. J. Bifur. Chaos.
,
10
(
10
), pp.
2361
2380
.10.1142/S0218127400001511
4.
Lakshmanan
,
M.
, and
Murali
,
K.
,
1996
,
Chaos in Nonlinear Oscillators: Controlling and Synchronization
,
World Scientific
,
Singapore
.
5.
Han
,
S. K.
,
Kerrer
,
C.
, and
Kuramoto
,
Y.
,
1995
, “
Dephasing and Bursting in Coupled Neural Oscillators
,”
Phys. Rev. Lett.
,
75
(
17
), pp.
3190
3193
.10.1103/PhysRevLett.75.3190
6.
Mengue
,
A.
, and
Essimbi
,
B.
,
2012
, “
Secure Communication Using Chaotic Synchronization in Mutually Coupled Semiconductor Lasers
,”
Nonlinear Dyn.
,
70
(
2
), pp.
1241
1253
.10.1007/s11071-012-0528-6
7.
Pourmahmood Aghababa
,
M.
, and
Pourmahmood Aghababa
,
H.
,
2012
, “
Adaptive Finite-Time Synchronization of Non-Autonomous Chaotic Systems With Uncertainty
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
), p.
031006
.10.1115/1.4023007
8.
Ouannas
,
A.
,
2014
, “
Chaos Synchronization Approach Based on New Criterion of Stability
,”
Nonlinear Dyn. Syst. Theory
,
14
(
4
), pp.
395
401
.
9.
Zhang
,
F.
, and
Liu
,
S.
,
2013
, “
Full State Hybrid Projective Synchronization and Parameters Identification for Uncertain Chaotic (Hyperchaotic) Complex Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
2
), p.
021009
.10.1115/1.4025475
10.
Diyi
,
C.
,
Weili
,
Z.
,
Xinzhi
,
L.
, and
Xiaoyi
,
Ma.
,
2014
, “
Synchronization and Antisynchronization of a Class of Chaotic Systems With Nonidentical Orders and Uncertain Parameters
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
1
), p.
011003
.10.1115/1.4027715
11.
Ju
,
H.P.
,
2007
, “
A New Approach to Synchronization of Discrete-Time Chaotic Systems
,”
J. Phys. Soc. Jpn.
,
76
(
9
), p.
093002
.10.1143/JPSJ.76.093002
12.
Filali
,
R. L.
,
Hammami
,
S.
,
Benrejeb
,
M.
, and
Borne
,
P.
,
2012
, “
On Synchronization, Anti-Synchronization and Hybrid Synchronization of 3D Discrete Generalized Hénon Map
,”
Nonlinear Dyn. Syst. Theory
,
12
(
1
), pp.
81
95
.
13.
Ouannas
,
A.
,
2014
, “
Nonlinear Control Method of Chaos Synchronization for Arbitrary 2D Quadratic Dynamical Systems in Discrete-Time
,”
Int. J. Math. Anal.
,
8
(
53
), pp.
2611
2617
.10.12988/ijma.2014.49280
14.
Ouannas
,
A.
,
2014
, “
A New Chaos Synchronization Criterion for Discrete Dynamical Systems
,”
Appl. Math. Sci.
,
8
(
41
), pp.
2025
2034
.10.12988/ams.2014.4132
15.
Aguilar-Bustos
,
A. Y.
, and
Cruz Hernandez
,
Y. C.
,
2009
, “
Synchronization of Discrete-Time Hyperchaotic Systems: An Application in Communications
,”
Chaos Solitons Fractals
,
41
(
3
), pp.
1301
1310
.10.1016/j.chaos.2008.05.012
16.
Liu
,
W.
,
Wang
,
Z. M.
, and
Zhang
,
W. D.
,
2012
, “
Controlled Synchronization of Discrete-Time Chaotic Systems Under Communication Constraints
,”
Nonlinear. Dyn.
,
69
(
1–2
), pp.
223
230
.10.1007/s11071-011-0259-0
17.
Filali
,
R. L.
,
Benrejeb
,
M.
, and
Borne
,
P.
,
2014
, “
On Observer-Based Secure Communication Design Using Discrete-Time Hyperchaotic Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
5
), pp.
1424
1432
.10.1016/j.cnsns.2013.09.005
18.
Yan
,
Z. Y.
,
2005
, “
Q-S Synchronization in 3D Hénon-Like Map and Generalized Hénon Map Via a Scalar Controller
,”
Phys. Lett. A
,
342
(
4
), pp.
309
315
.10.1016/j.physleta.2005.04.049
19.
Li
,
Y.
,
Chen
,
Y.
, and
Li
,
B.
,
2009
, “
Adaptive Control and Function Projective Synchronization in 2D Discrete-Time Chaotic Systems
,”
Commun. Theor. Phys.
,
51
(
2
), pp.
270
278
.10.1088/0253-6102/51/2/17
20.
Li
,
Y.
,
Chen
,
Y.
, and
Li
,
B.
,
2009
, “
Adaptive Function Projective Synchronization of Discrete-Time Chaotic Systems
,”
Chin. Phys. Lett.
,
26
(
4
), p.
040504
.10.1088/0256-307X/26/4/040504
21.
Chai
,
Y.
,
,
L.
, and
Zhao
,
H. Y.
,
2010
, “
Lag Synchronization Between Discrete Chaotic Systems With Diverse Structure
,”
Appl. Math. Mech. Engl.
,
31
(
6
), pp.
733
738
.10.1007/s10483-010-1307-7
22.
Yanbo
,
G.
,
Xiaomei
,
Z.
,
Guoping
,
L.
, and
Yufan
,
Z.
,
2011
, “
Impulsive Synchronization of Discrete-Time Chaotic Systems Under Communication Constraints
,”
Commun. Nonlinear. Sci. Numer. Simul.
,
16
(
3
), pp.
1580
1588
.10.1016/j.cnsns.2010.07.002
23.
Ouannas
,
A.
,
2014
, “
On Full-State Hybrid Projective Synchronization of General Discrete Chaotic Systems
,”
J. Nonlinear Dyn.
,
2014
, p.
983293
.10.1155/2014/983293
24.
Hao
,
D.
,
Xin
,
J. L.
, and
Bin
,
Z. Y.
,
2012
, “
Adaptive Generalized Matrix Projective Lag Synchronization Between Two Different Complex Networks With Non-Identical Nodes and Different Dimensions
,”
Chin. Phys. B.
,
21
(
12
), p.
120508
.10.1088/1674-1056/21/12/120508
25.
Wu
,
Z.
,
Xu
,
X.
,
Chen
,
G.
, and
Fu
,
X.
,
2014
, “
Generalized Matrix Projective Synchronization of General Colored Networks With Different-Dimensional Node Dynamics
,”
J. Franklin Inst.
,
351
(
9
), pp.
4584
4595
.10.1016/j.jfranklin.2014.07.008
26.
Ma
,
Z.
,
Liu
,
Z.
, and
Zhang
,
G.
,
2007
, “
Generalized Synchronization of Discrete Systems
,”
Appl. Math. Mech.
,
28
(
5
), pp.
609
614
.10.1007/s10483-007-0506-y
27.
Jianfeng
,
L.
,
2008
, “
Generalized (Complete, Lag, Anticipated) Synchronization of Discrete-Time Chaotic Systems
,”
Commun. Nonlinear. Sci. Numer. Simul.
,
13
(
9
), pp.
1851
1859
.10.1016/j.cnsns.2007.04.022
28.
Grassi
,
G.
,
2012
, “
Generalized Synchronization Between Different Chaotic Maps Via Dead-Beat Control
,”
Chin. Phys. B.
,
21
(
5
), p.
050505
.10.1088/1674-1056/21/5/050505
29.
Yin
,
L.
, and
Tianyan
,
D.
,
2010
, “
Adaptive Control for Anticipated Function Projective Synchronization of 2D Discrete-Time Chaotic Systems With Uncertain Parameters
,”
J. Uncertain Syst.
,
4
(
3
), pp.
195
205
.
30.
Yan
,
Z. Y.
,
2006
, “
Q-S (Complete or Anticipated) Synchronization Backstepping Scheme in a Class of Discrete-Time Chaotic (Hyperchaotic) Systems: A Symbolic-Numeric Computation Approach
,”
Chaos
,
16
(
1
), p.
013119
.10.1063/1.1930727
You do not currently have access to this content.