The main goal of this paper is to develop subequation method for solving nonlinear evolution equations of time-fractional order. We use the subequation method to calculate the exact solutions of the time-fractional Burgers, Sharma–Tasso–Olver, and Fisher's equations. Consequently, we establish some new exact solutions for these equations.
Issue Section:
Technical Brief
References
1.
Wu
, C. C.
, 2011
, “A Fractional Variational Iteration Method for Solving Fractional Nonlinear Differential Equations
,” Comput. Math. Appl.
, 61
(8
), pp. 2186
–2190
.10.1016/j.camwa.2010.09.0102.
El-Sayed
, A. M. A.
, and Gaber
, M.
, 2006
, “The Adomian Decomposition Method for Solving Partial Differential Equations of Fractal Order in Finite Domains
,” Phys. Lett. A
, 359
(3
), pp. 175
–182
.10.1016/j.physleta.2006.06.0243.
Gepreel
, K. A.
, 2011
, “The Homotopy Perturbation Method Applied to the Nonlinear Fractional Kolmogorov–Petrovskii–Piskunov Equations
,” Appl. Math. Lett.
, 24
(8
), pp. 1428
–1434
.10.1016/j.aml.2011.03.0254.
Cui
, M.
, 2009
, “Compact Finite Difference Method for the Fractional Diffusion Equation
,” J. Comput. Phys.
, 228
(20
), pp. 7792
–7804
.10.1016/j.jcp.2009.07.0215.
Oldman
, K. B.
, and Spanier
, J.
, 1974
, The Fractional Calculus
, Academic Press
, NY
.6.
Miller
, K. S.
, and Ross
, B.
, 1993
, An Introduction to the Fractional Calculus and Fractional Differential Equations
, Wiley
, NY
.7.
Podlubny
, I.
, 1999
, Fractional Differential Equations
, Academic Press
, CA
.8.
Kilbas
, A. A.
, Srivastava
, H. M.
, and Trujillo
, J. J.
, 2006
, Theory and Applications of Fractional Differential Equations
, Elsevier
, Amsterdam, The Netherlands
.9.
Zhang
, S.
, Zong
, Q.-A.
, Liu
, D.
, and Gao
, Q.
, 2010
, “A Generalized Exp-Function Method for Fractional Riccati Differential Equations
,” Commun. Fractional Calculus
, 1
(1
), pp. 48
–51
.10.
Bekir
, A.
, Güner
, Ö.
, and Cevikel
, A. C.
, 2013
, “Fractional Complex Transform and Exp-Function Methods for Fractional Differential Equations
,” Abstr. Appl. Anal.
, 2013
, p. 426462
.10.1155/2013/42646211.
Zheng
, B.
, 2012
, “(G’/G)-Expansion Method for Solving Fractional Partial Differential Equations in the Theory of Mathematical Physics
,” Commun. Theor. Phys.
, 58
(5
), pp. 623
–630
.10.1088/0253-6102/58/5/0212.
Gepreel
, K. A.
, and Omran
, S.
, 2012
, “Exact Solutions for Nonlinear Partial Fractional Differential Equations
,” Chin. Phys. B
, 21
(11
), p. 110204
.10.1088/1674-1056/21/11/11020413.
Shang
, N.
, and Zheng
, B.
, 2013
, “Exact Solutions for Three Fractional Partial Differential Equations by the Method
,” Int. J. Appl. Math.
, 43
(3
), pp. 114
–119
.14.
Lu
, B.
, 2012
, “The First Integral Method for Some Time Fractional Differential Equations
,” J. Math. Anal. Appl.
, 395
(2
), pp. 684
–693
.10.1016/j.jmaa.2012.05.06615.
Bekir
, A.
, Güner
, Ö.
, and Unsal
, Ö.
, 2014, “The First Integral Method for Exact Solutions of Nonlinear Fractional Differential Equations
,” ASME J. Comput. Nonlinear Dyn.
, (in press).10.1115/1.402806516.
Bulut
, H.
, and Pandir
, Y.
, 2013
, “Modified Trial Equation Method to the Nonlinear Fractional Sharma–Tasso–Olever Equation
,” Int. J. Model. Optim.
, 3
(4
), pp. 353
–357
.10.7763/IJMO.2013.V3.29717.
Bulut
, H.
, Baskonus
, H. M.
, and Pandir
, Y.
, 2013
, “The Modified Trial Equation Method for Fractional Wave Equation and Time Fractional Generalized Burgers Equation
,” Abstr. Appl. Anal.
, 2013
, p. 636802
.10.1155/2013/63680218.
Guo
, S.
, Mei
, L.
, Li
, Y.
, and Sun
, Y.
, 2012
, “The Improved Fractional Sub-Equation Method and Its Applications to the Space–Time Fractional Differential Equations in Fluid Mechanics
,” Phys. Lett. A
, 376
(4
), pp. 407
–411
.10.1016/j.physleta.2011.10.05619.
Tong
, B.
, He
, Y.
, Wei
, L.
, and Zhang
, X.
, 2012
, “A Generalized Fractional Sub-Equation Method for Fractional Differential Equations With Variable Coefficients
,” Phys. Lett. A
, 376
(38–39
), pp. 2588
–2590
.10.1016/j.physleta.2012.07.01820.
Jafari
, H.
, Tajadodi
, H.
, Kadkhoda
, N.
, and Baleanu
, D.
, 2013
, “Fractional Sub-Equation Method for Cahn–Hilliard and Klein–Gordon Equations
,” Abstr. Appl. Anal.
, 2013
, p. 587179
.10.1155/2013/58717921.
Lu
, B.
, 2012
, “Bäcklund Transformation of Fractional Riccati Equation and Its Applications to Nonlinear Fractional Partial Differential Equations
,” Phys. Lett. A
, 376
(28–29
), pp. 2045
–2048
.10.1016/j.physleta.2012.05.01322.
Zhang
, Y.
, 2013
, “Time-Fractional Camassa–Holm equation: Formulation and Solution Using Variational Methods
,” ASME J. Comput. Nonlinear Dyn.
, 8
(4
), p. 041020
.10.1115/1.402497023.
Jafari
, H.
, Tajadodi
, H.
, and Baleanu
, D.
, 2014
, “Application of a Homogeneous Balance Method to Exact Solutions of Nonlinear Fractional Evolution Equations
,” ASME J. Comput. Nonlinear Dyn.
, 9
(2
), p. 021019
.10.1115/1.402577024.
Doha
, E.
, Bhrawy
, A.
, and Ezz-Eldien
, S.
, 2014, “An Efficient Legendre Spectral Tau Matrix Formulation for Solving Fractional Sub-Diffusion and Reaction Sub-Diffusion Equations
,” ASME J. Comput. Nonlinear Dyn.
, (in press).10.1115/1.402794425.
Zhang
, S.
, and Zhang
, H.-Q.
, 2011
, “Fractional Sub-Equation Method and Its Applications to Nonlinear Fractional PDEs
,” Phys. Lett. A
, 375
(7
), pp. 1069
–1073
.10.1016/j.physleta.2011.01.02926.
Ibrahim
, R. W.
, 2012
, “Fractional Complex Transforms for Fractional Differential Equations
,” Adv. Differ. Equations
, 2012
(1
), p. 192
.10.1186/1687-1847-2012-19227.
Luchko
, Y.
, and Gorenflo
, R.
, 1999
, “An Operational Method for Solving Fractional Differential Equations With the Caputo Derivatives
,” Acta Math. Vietnam.
, 24
(2
), pp. 207
–233
.28.
Liao
, J.
, Chen
, F.
, and Hu
, S.
, 2013
, “Existence of Solutions for Fractional Impulsive Neutral Functional Differential Equations With in Finite Delay
,” Neurocomputing
, 122
, pp. 156
–162
.10.1016/j.neucom.2013.06.03429.
Samko
, S. G.
, Kilbas
, A. A.
, and Marichev
, O. I.
, 1993
, Fractional Integrals and Derivatives: Theory and Applications
, Gordon and Breach Science Publishers
, Switzerland
.30.
Jumarie
, G.
, 2006
, “Modified Riemann–Liouville Derivative and Fractional Taylor Series of Nondifferentiable Functions Further Results
,” Comput. Math. Appl.
, 51
(9–10
), pp. 1367
–1376
.10.1016/j.camwa.2006.02.00131.
Jumarie
, G.
, 2007
, “Fractional Partial Differential Equations and Modified Riemann-Liouville Derivative New Methods for Solution
,” J. Appl. Math. Comput.
, 24
(1–2
), pp. 31
–48
.10.1007/BF0283229932.
Li
, Z. B.
, and He
, J. H.
, 2010
, “Fractional Complex Transform for Fractional Differential Equations
,” Math. Comput. Appl.
, 15
(5
), pp. 970
–973
.33.
Inc
, M.
, 2008
, “The Approximate and Exact Solutions of the Space- and Time-Fractional Burgers Equations With Initial Conditions by Variational Iteration Method
,” J. Math. Anal. Appl.
, 345
(1
), pp. 476
–484
.10.1016/j.jmaa.2008.04.00734.
Bekir
, A.
, and Güner
, Ö.
, 2013
, “Exact Solutions of Nonlinear Fractional Differential Equations by -Expansion Method
,” Chin. Phys. B
, 22
(11
), p. 110202
10.1088/1674-1056/22/11/11020235.
Song
, L. N.
, Wang
, Q.
, and Zhang
, H. Q.
, 2009
, “Rational Approximation Solution of the Fractional Sharma-Tasso-Olver Equation
,” J. Comput. Appl. Math.
, 224
(1
), pp. 210
–218
.10.1016/j.cam.2008.04.03336.
Jafari
, H.
, Tajadodi
, H.
, Baleanu
, D.
, Al-Zahrani
,A. A.
, Alhamed
, Y. A.
, and Zahid
, A. H.
, 2013
, “Fractional Sub-Equation Method for the Fractional Generalized Reaction Duffing Model and Nonlinear Fractional Sharma–Tasso–Olver Equation
,” Cent. Eur. J. Phys.
, 11
(10
), pp. 1482
–1486
.10.2478/s11534-013-0203-737.
Güner
, Ö.
, and Çevikel
, A. C.
, 2014
, “A Procedure to Construct Exact Solutions of Nonlinear Fractional Differential Equations
,” The Sci. World J.
, 2014, p. 489495.10.1155/2014/48949538.
Khan
, N. A.
, Ayaz
, M.
, Jin
, L.
, and Yildirim
, A.
, 2011
, “On Approximate Solutions for the Time-Fractional Reaction–Diffusion Equation of Fisher Type
,” Int. J. Phys. Sci.
, 6
(10
), pp. 2483
–2496
.10.5897/IJPS11.56339.
Bekir
, A.
, Güner
, Ö.
, and Cevikel
, A. C.
, 2014
, “Using a Complex Transformation With Exp-Function Method to get an Exact Solutions for Fractional Differential Equation
,” Curr. Adv. Math. Research
, 1
(1
), pp. 35
–44
.40.
Rida
, S. Z.
, El-Sayed
, A. M. A.
, and Arafa
, A. A. M.
, 2012
, “On the Solutions of Time-Fractional Reaction–Diffusion Equations
,” Commun. Nonlinear Sci. Numer. Simul.
, 15
(12
), pp. 3847
–3854
.10.1016/j.cnsns.2010.02.007Copyright © 2015 by ASME
You do not currently have access to this content.