Bifurcations and chaotic motions of a class of mechanical system subjected to a superharmonic parametric excitation or a nonlinear periodic parametric excitation are studied, respectively, in this paper. Chaos arising from the transverse intersections of the stable and unstable manifolds of the homoclinic and heteroclincic orbits is analyzed by Melnikov's method. The critical curves separating the chaotic and nonchaotic regions are plotted. Chaotic dynamics are compared for these systems with a periodic parametric excitation or a superharmonic parametric excitation, or a nonlinear periodic parametric excitation. Especially, some new dynamical phenomena are presented for the system with a nonlinear periodic parametric excitation.
Issue Section:
Technical Brief
References
1.
Winkler
, E.
, 1867
, “Die Lehre von der Elastizitat und Festigkeit
,” Dominicus, Prague.2.
Pasternak
, P. L.
, 1954
, “On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants (in Russian), Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu I Arkhitekture, USSR
,” Moscow.3.
Lenci
, S.
, and Tarantino
, A. M.
, 1996
, “Chaotic Dynamics of an Elastic Beam Resting on a Winkler-Type Soil
,” Chaos Solitions Fractals
, 7
(10
), pp. 1601
–1614
.10.1016/S0960-0779(96)00030-64.
Lenci
, S.
, Menditto
, G.
, and Tarantino
, A. M.
, 1999
, “Homoclinic and Heteroclinic Bifurcations in the Non-Linear Dynamics of a Beam Resting on an Elastic Substrate
,” Int. J. Non-linear Mech.
, 34
(4
), pp. 615
–632
.10.1016/S0020-7462(98)00001-85.
De
, S. K.
, and Aluru
, N. R.
, 2005
, “Complex Oscillations and Chaos in Electrostatic Microelectromechanical Systems Under Superharmonic Excitations
,” Phys. Rev. Lett.
, 94
(20
), p. 204101
.10.1103/PhysRevLett.94.2041016.
Ding
, H.
, and Zu
, J. W.
, 2013
, “Periodic and Chaotic Responses of an Axially Accelerating Viscoelastic Beam Under Two-Frequency Excitations
,” ASME Int. J. Appl. Mech.
, 5
(2
), p. 1350019
.10.1142/S17588251135001917.
Chen
, X. W.
, Jing
, Z. J.
, and Fu
, X. L.
, 2014
, “Chaos Control in a Pendulum System With Excitations and Phase Shift
,” Nonlinear Dyn.
, 78
(1), pp. 317
–327
.10.1007/s11071-014-1441-y8.
Yao
, M. H.
, and Zhang
, W.
, 2013
, “Multipulse Heteroclinic Orbits and Chaotic Dynamics of the Laminated Composite Piezoelectric Rectangular Plate
,” Discrete Dyn. Nat. Soc.
, 2013
(1–27
), p. 958219
10.1155/2013/958219.9.
Ng
, L.
, and Rand
, R.
, 2003
, “Nonlinear Effects on Coexistence Phenomenon in Parametric Excitation
,” Nonlinear Dyn.
, 31
(1
), pp. 73
–89
.10.1023/A:102218411457610.
Bridge
, J.
, Rand
, R.
, and Sah
, S. M.
, 2009
, “Slow Passage Through Multiple Parametric Resonance Tongues
,” J. Vib. Control
, 15
(10
), pp. 1581
–1600
.10.1177/107754630910326311.
Wiggins
, S.
, 1990
, Introduction to Applied Non-Linear Dynamical Systems and Chaos
, Springer
, New York
.12.
Guckenheimer
, J.
, and Holmes
, P. J.
, 1983
, Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields
, Springer
, New York
10.1007/978-1-4612-1140-2.Copyright © 2015 by ASME
You do not currently have access to this content.