In this paper, an adaptive control scheme is offered to synchronize two different uncertain chaotic systems. It is assumed that the whole dynamics of both master and slave chaotic systems and their bounds are unknown and different. The error system stabilization is achieved in two cases: with input nonlinearities and without input nonlinearities. We design an adaptive control scheme based on the state boundedness property of the chaotic systems. The proposed method does not need any information about nonlinear/linear terms of the chaotic systems. It only uses an adaptive feedback control strategy. The stability of the proposed controllers is proved by using the Lyapunov stability theory. Finally, the designed adaptive controllers are applied to synchronize two different pairs of the chaotic systems (Lorenz–Chen and electromechanical device–electrostatic transducer).

References

1.
Fradkov
,
A. L.
, and
Evans
,
R. J.
,
2005
, “
Control of Chaos: Methods and Applications in Engineering
,”
Annu. Rev. Control
,
29
(1), pp.
33
56
.10.1016/j.arcontrol.2005.01.001
2.
Curran
,
P. F.
, and
Chua
,
L. O.
,
1997
, “
Absolute Stability Theory and the Synchronization Problem
,”
Int. J. Bifurcation Chaos
,
7
, pp.
1357
1382
.10.1142/S0218127497001096
3.
Shi
,
X.
, and
Wang
,
Z.
,
2012
, “
Adaptive Synchronization of the Energy Resource Systems With Mismatched Parameters Via Linear Feedback Control
,”
Nonlinear Dyn.
,
69
(3), pp.
993
997
.10.1007/s11071-011-0321-y
4.
Tian
,
Y. P.
, and
Yu
,
X.
,
2000
, “
Stabilization Unstable Periodic Orbits of Chaotic Systems Via an Optimal Principle
,”
J. Franklin Inst. Eng. Appl. Math.
,
337
(6), pp.
771
779
.10.1016/S0016-0032(00)00047-8
5.
Li
,
C.
,
Su
,
K.
, and
Wu
,
L.
,
2013
, “
Adaptive Sliding Mode Control for Synchronization of a Fractional-Order Chaotic System
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
), p.
031005
.10.1115/1.4007910
6.
Chen
,
D.
,
Zhang
,
R.
,
Ma
,
X.
, and
Liu
,
S.
,
2012
, “
Chaotic Synchronization and Anti-Synchronization for a Novel Class of Multiple Chaotic Systems Via a Sliding Mode Control Scheme
,”
Nonlinear Dyn.
,
69
(1–2), pp.
35
55
.10.1007/s11071-011-0244-7
7.
Chen
,
D. Y.
,
Liu
,
Y. X.
,
Ma
,
X. Y.
, and
Zhang
,
R. F.
,
2012
,“
Control of a Class of Fractional-Order Chaotic Systems Via Sliding Mode
,”
Nonlinear Dyn.
,
67
(1), pp.
893
901
.10.1007/s11071-011-0002-x
8.
Farid
,
Y.
, and
Bigdeli
,
N.
,
2012
, “
Robust Adaptive Intelligent Sliding Model Control for a Class of Uncertain Chaotic Systems With Unknown Time-Delay
,”
Nonlinear Dyn.
,
67
(3), pp.
2225
2240
.10.1007/s11071-011-0141-0
9.
Aghababa
,
M. P.
,
2014
, “
Control of Fractional-Order Systems Using Chatter-Free Sliding Mode Approach
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
3
), p.
031003
.10.1115/1.4025771
10.
Aghababa
,
M. P.
, and
Heydari
,
A.
,
2012
, “
Chaos Synchronization Between Two Different Chaotic Systems With Uncertainties, External Disturbances, Unknown Parameters and Input Nonlinearities
,”
Appl. Math. Modell.
,
36
(4), pp.
1639
1652
.10.1016/j.apm.2011.09.023
11.
Aghababa
,
M. P.
,
2012
, “
Robust Finite-Time Stabilization of Fractional-Order Chaotic Systems Based on Fractional Lyapunov Stability Theory
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
2
), p.
021010
.10.1115/1.4005323
12.
Aghababa
,
M. P.
,
2012
, “
Finite-Time Chaos Control and Synchronization of Fractional-Order Nonautonomous Chaotic (Hyperchaotic) Systems Using Fractional Nonsingular Terminal Sliding Mode Technique
,”
Nonlinear Dyn.
,
69
(1–2), pp.
247
261
.10.1007/s11071-011-0261-6
13.
Aghababa
,
M. P.
, and
Aghababa
,
H. P.
,
2012
, “
A General Nonlinear Adaptive Control Scheme for Finite-Time Synchronization of Chaotic Systems With Uncertain Parameters and Nonlinear Inputs
,”
Nonlinear Dyn.
,
69
(4), pp.
1903
1914
.10.1007/s11071-012-0395-1
14.
Aghababa
,
M. P.
, and
Aghababa
,
H. P.
,
2012
, “
Chaos Suppression of Rotational Machine Systems Via Finite-Time Control Method
,”
Nonlinear Dyn.
,
69
(4), pp.
1881
1888
.10.1007/s11071-012-0393-3
15.
Aghababa
,
M. P.
,
2011
, “
A Novel Adaptive Finite-Time Controller for Synchronizing Chaotic Gyros With Nonlinear Inputs
,”
Chin. Phys. B
,
20
(9), p.
090505
.10.1088/1674-1056/20/9/090505
16.
Aghababa
,
M. P.
, and
Aghababa
,
H. P.
,
2011
, “
Synchronization of Nonlinear Chaotic Electromechanical Gyrostat Systems With Uncertainties
,”
Nonlinear Dyn.
,
67
(4), pp.
2689
2701
.10.1007/s11071-011-0181-5
17.
Aghababa
,
M. P.
, and
Aghababa
,
H. P.
,
2013
, “
Stabilization of Gyrostat System With Dead-Zone Nonlinearity in Control Input
,”
J. Vib. Control
, (online).10.1177/1077546313486506
18.
Aghababa
,
M. P.
,
2014
, “
Adaptive Control for Electromechanical Systems Considering Dead-Zone Phenomenon
,”
Nonlinear Dyn.
,
75
, pp.
157
174
.10.1007/s11071-013-1056-8
19.
Zhang
,
F.
, and
Liu
,
S.
,
2013
, “
Full State Hybrid Projective Synchronization and Parameters Identification for Uncertain Chaotic (Hyperchaotic) Complex Systemsa
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(2), p. 021009.
20.
Aghababa
,
M. P.
, and
Aghababa
,
H. P.
,
2014
, “
Finite–Time Stabilization of Non-Autonomous Uncertain Chaotic Centrifugal Flywheel Governor Systems With Input Nonlinearities
,”
J. Vib. Control
,
20
(3), pp.
436
446
.10.1177/1077546312463715
21.
Chang
,
W. D.
, and
Yan
,
J. J.
,
2005
, “
Adaptive Robust PID Controller Design Based on a Sliding Mode for Uncertain Chaotic Systems
,”
Chaos, Solitons Fractals
,
26
(1), pp.
167
175
.10.1016/j.chaos.2004.12.013
22.
Wang
,
Y. W.
,
Wen
,
C.
,
Yang
,
M.
, and
Xiao
,
J. W.
,
2008
, “
Adaptive Control and Synchronization for Chaotic Systems With Parametric Uncertainties
,”
Phys. Lett. A
,
372
(14), pp.
2409
2414
.10.1016/j.physleta.2007.11.066
23.
Salarieh
,
H.
, and
Alasty
,
A.
,
2008
, “
Adaptive Control of Chaotic Systems With Stochastic Time Varying Unknown Parameters
,”
Chaos, Solitons Fractals
,
38
(1), pp.
168
177
.10.1016/j.chaos.2006.10.063
24.
Li
,
Z.
, and
Shi
,
S.
,
2003
, “
Robust Adaptive Synchronization of Rossler and Chen Chaotic Systems Via Slide Technique
,”
Phys. Lett. A
,
311
(4–5), pp.
389
395
.10.1016/S0375-9601(03)00535-8
25.
Huang
,
J.
,
2008
, “
Adaptive Synchronization Between Different Hyperchaotic Systems With Fully Uncertain Parameters
,”
Phys. Lett. A
,
372
(27–28), pp.
4799
4804
.10.1016/j.physleta.2008.05.025
26.
Recker
,
D. A.
,
1997
, “
Indirect Adaptive Non-linear Control of Discrete Time Systems Containing a Dead-Zone
,”
Int. J. Adapt. Control Signal Process.
,
11
(
1
), pp.
33
48
.10.1002/(SICI)1099-1115(199702)11:1<33::AID-ACS393>3.0.CO;2-I
27.
Doornik
,
J. V.
, and
Ben-Menahem
,
S.
,
2011
, “
Control of Robots Using Radial Basis Function Neural Networks With Dead-Zone
,”
Int. J. Adapt. Control Signal Process.
,
25
(
7
), pp.
613
638
.10.1002/acs.1226
28.
Taware
,
A.
, and
Tao
,
G.
,
2002
, “
Neural-Hybrid Control of Systems With Sandwiched Dead-Zones
,”
Int. J. Adapt. Control Signal Process.
,
16
(7), pp.
473
496
.10.1002/acs.704
29.
Fu
,
Y.
, and
Chai
,
T.
,
2012
, “
Robust Self-Tuning PI Decoupling Control of Uncertain Multivariable Systems
,”
Int. J. Adapt. Control Signal Process.
,
26
(
4
), pp.
316
332
.10.1002/acs.1285
30.
Zheng
,
Y.
,
Wen
,
C.
, and
Li
,
Z.
,
2013
, “
Robust Adaptive Asymptotic Tracking Control of Uncertain Nonlinear Systems Subject to Nonsmooth Actuator Nonlinearities
,”
Int. J. Adapt. Control Signal Process.
,
27
(
1–2
), pp.
108
121
.10.1002/acs.2336
31.
Yau
,
H. T.
, and
Yan
,
J. J.
,
2008
, “
Chaos Synchronization of Different Chaotic Systems Subjected to Input Nonlinearity
,”
Appl. Math. Comput.
,
197
(2), pp.
775
788
.10.1016/j.amc.2007.08.014
32.
Lorenz
,
E.
,
1963
, “
Deterministic Nonperiodic Flow
,”
J. Atmos. Sci.
,
20
(2), pp.
130
141
.10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
33.
Chen
,
G.
, and
Ueta
,
T.
,
1999
, “
Yet Another Chaotic Attractor
,”
Int. J. Bifurcation Chaos
,
9
, pp.
1465
1466
.10.1142/S0218127499001024
34.
Yamapi
,
R.
,
Orou
,
J. B. C.
, and
Woafo
,
P.
,
2003
, “
Harmonic Oscillations, Stability and Chaos Control in a Non‐Linear Electromechanical System
,”
J. Sound Vib.
,
259
(5) pp.
1253
1264
.10.1006/jsvi.2002.5289
You do not currently have access to this content.