The effectiveness of alternative stiffening types of the cutout provided near the base of tubular steel wind turbine towers is assessed, taking into account the dynamic nature of wind loading. To that effect, artificial wind load time histories are first obtained using the public domain aero-elastic code FAST. Finite element models that have been previously validated by means of comparison with experimental results, are then used to carry out fully nonlinear dynamic analyses and compare strength and overall structural performance.

References

1.
Brogan
,
F.
, and
Almroth
,
B. O.
,
1970
, “
Buckling of Cylinders With Cutout
,”
AIAA
,
8
(
2
), pp.
236
240
.10.2514/3.5649
2.
Almroth
,
B. O.
, and
Holmes
,
A. M. C.
,
1972
, “
Buckling of Shells With Cutouts, Experiment and Analysis
,”
Int. J. Solids Struct.
,
8
(
8
), pp.
1057
1071
.10.1016/0020-7683(72)90070-4
3.
Schulz
,
U.
,
1976
, “
Die Stabilität axial belasteter Zylinderschalen mit Mantelöffnungen.
” Bauinginieur,
51
(
10
), pp.
387
396
.
4.
Bennett
,
J. G.
,
Dove
,
R. C.
, and
Butler
,
T. A.
,
1981
, “
An Investigation of Buckling of Steel Cylinders With Circular Cutouts Reinforced in Accordance With ASME RULES
,” Report From Los Alamos Scientific Laboratory, Report No. NUREG/CR-2165 LA-8853-MS.
5.
Baehre
,
R.
, and
Knödel
,
P.
,
1986
,
Stabilität und Gebrauchsfägihkeit von biegebeanspruchten Stahlschornsteinen mit Ausschnitten
,
Gutachten für die Fa. Mauer u. Sohne vom Lehrstuhl für Stahl-und Leichtbau Universität Karlsruhe
,
Februar
.
6.
Knödel
,
P.
, and
Schulz
,
U.
,
1985
,
Das Beulverhalten von biegebeanspruchten Zylinderschalen mit großen Mantelöffnungen
, Forsch.ber. Versuchsanstalt für Stahl, Holz und Steine,
Universität Karlsruhe
, T, p.
1553
.
7.
Öry
,
H.
,
Ferlic
,
N.
, and
Reimerdes
,
H. G.
,
1987
,
Große Ausschnitte in langen Kreiszylinderschalen
,
Forsch.ber.
, T. 1863, 2, Fassung.
8.
Salmi
,
P.
, and
Ala-Outinen
,
T.
,
1997
, “
Cylindrical Shell Structures From Austenitic Stainless Under Meridional Compression
,” Technical Research Centre of Finland, Report No. VTT 1897.
9.
Dimopoulos
,
C. A.
, and
Gantes
,
C. J.
,
2012
, “
Experimental Investigation of Buckling of Wind Turbine Tower Cylindrical Shells With Opening and Stiffening Under Bending
,”
Thin-Walled Struct.
,
54
, pp.
140
155
.10.1016/j.tws.2012.02.011
10.
Dimopoulos
,
C. A.
, and
Gantes
,
C. J.
,
2013
, “
Comparison of Stiffening Types of the Cutout in Tubular Wind Turbine Towers
,”
J. Constr. Steel Res.
,
83
, pp.
62
74
.10.1016/j.jcsr.2012.12.016
11.
National Renewable Energy Laboratory
, NREL, http://www.nrel.gov/
12.
National Wind Technology Center, NWTC, http://www.nrel.gov/nwtc/
13.
NWTC Computer-Aided Engineering Tools (FAST by Jason Jonkman, Ph.D.), last modified Oct. 28,
2013
; last accessed Nov. 1, 2013, http://wind.nrel.gov/designcodes/simulators/fast/
14.
Jonkman
,
J. M.
, and
Buhl
,
M. L.
, Jr.
,
2005
, “
FAST User's Guide
,” Technical Report No. NREL/EL-500-38230.
15.
NWTC Computer-Aided Engineering Tools (AeroDyn by David J. Laino, Ph.D.), last modified Feb. 23,
2013
; last accessed Nov. 1, 2013, http://wind.nrel.gov/designcodes/simulators/aerodyn/
16.
Laino
,
D. J.
, and
Hansen
,
A. C.
,
2002
, “
User's Guide to the Wind Turbine Aerodynamics Computer Software AeroDyn
,” Subcontract No. TCX-9-29209-01, National Renewable Energy Laboratory.
17.
Moriarty
,
P. J.
, and
Hansen
,
A. C.
,
2005
, “
AeroDyn Theory Manual
,” Report No. NREL/EL-500-36881.
18.
NWTC Computer-Aided Engineering Tools (TurbSim by Neil Kelley, Bonnie Jonkman), last modified May 30,
2013
; last accessed Nov. 1, 2013, http://wind.nrel.gov/designcodes/preprocessors/turbsim/
19.
Jonkman
,
B. J.
, and
Kilcher
,
L.
,
2012
, “
TurbSim User's Guide
,” Technical Report No. NREL/TP-500-39797.
20.
IEC 61400-1,
2005
,
Wind Turbines, Part I—Design Requirements
, 3rd ed.,
International Standard
, International Electrotechnical Commission.
21.
Burton
,
T.
,
Sharpe
,
D.
,
Jenkins
,
N.
, and
Bossanyi
,
E.
,
2001
,
Wind Energy Handbook
,
Wiley
,
New York
.
22.
Hansen
,
M. O. L.
,
2008
,
Aerodynamics of Wind Turbines
, 2nd ed.,
Earthscan
,
London, UK
.
23.
Borri
,
C.
,
Biagini
,
P.
, and
Marino
,
E.
,
2011
, “
Large Wind Turbines in Earthquake Areas: Structural Analyses, Design/Construction & In-Situ Testing
,”
Environmental Wind Engineering and Design of Wind Energy Structures—CISM Courses and Lectures
, Vol.
531
,
C. Baniotopoulos
,
C. Borri
, and
T. Stathopoulos
, eds., Springer, Vienna, pp.
295
350
.10.1007/978-3-7091-0953-3_7
24.
Ingram
,
G.
,
2011
, “
Wind Turbine Blade Analysis Using the Blade Element Momentum Method
,” (Version 1.1), last accessed Jan. 27, 2012, available at http://www.dur.ac.uk/g.l.ingram/download/wind_turbine_design.pdf
25.
“Computer-Aided Engineering Tools,” http://wind.nrel.gov/designcodes/simulators/fast/, National Renewable Energy Laboratory
26.
Manjock
,
A.
,
2005
, “
Evaluation Report: Design Codes FAST and ADAMS for Load Calculations of Onshore Wind Turbines
,” Report No. 72042, Germanischer Lloyd WindEnergie GmbH, Humburg, Germany.
27.
ABAQUS/Standard and ABAQUS/EXPLICIT—Version 6.8-1,
2008
, “
Abaqus Theory Manual
,” Dassault Systems.
28.
Vamvatsikos
,
D.
, and
Cornell
,
C. A.
,
2002
, “
Incremental Dynamic Analysis
,”
Earthquake Eng. Struct. Dyn.
,
31
(
3
), pp.
491
514
.10.1002/eqe.141
29.
Di Paola
,
M.
,
1998
, “
Digital Simulation of Wind Field Velocity
,”
J. Wind Eng. Ind. Aerodyn.
,
74–76
, pp.
91
109
.10.1016/S0167-6105(98)00008-7
30.
Dimopoulos
,
C. A.
,
2012
, “
Stiffening of Manhole Opening of Steel Wind Turbine Tower Shells—Experimental and Numerical Investigation
,” Ph.D. thesis Doctor of Philosophy, School of Civil Engineering, National Technical University of Athens (in Greek).
31.
Rotter
,
J. M.
, and
Teng
,
J.-G.
,
1989
, “
Elastic Stability of Cylindrical Shells With Weld Depressions
,”
J. Struct. Eng.
,
115
(
5
), pp.
1244
1263
.10.1061/(ASCE)0733-9445(1989)115:5(1244)
32.
Eurocode,
2006
, 3-Design of Steel Structures, Part 1-6: Strength and Stability of Shell Structures, European Committee for Standardization.
33.
Hilber
,
H. M.
,
Hughes
,
T. J. R.
, and
Taylor
,
R. L.
,
1977
, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
,
5
(
3
), pp.
283
292
.10.1002/eqe.4290050306
34.
Riks
,
E.
,
1979
, “
An Incremental Approach to the Solution of Snapping and Buckling Problems
,”
Int. J. Solids Struct.
,
15
(
7
), pp.
529
551
.10.1016/0020-7683(79)90081-7
You do not currently have access to this content.