This paper presents a dynamic finite element analysis model for a wind turbine gearbox in which a number of internal gears mesh with each other in a complex pattern. Differing from the conventional dynamic models in which the detailed gear teeth are fully modeled or gears and shafts are replaced with lumped masses, the tooth contact between a pair of gears is modeled using a spring element. The equivalent spring constant is determined by computing the stiffness of a gear tooth using a finite element analysis. The numerical accuracy of the proposed dynamic model is verified through a benchmark experiment of a gearbox with simple gear transmission system. In addition, the natural frequencies and dynamic responses of a 5 MW wind turbine gearbox that are obtained by the proposed modeling technique are given to support its validity and effectiveness.

References

1.
Hansen
,
A. D.
, and
Hansen
,
L. H.
,
2007
, “
Wind Turbine Concept Market Penetration Over 10 Years (1995–2004)
,”
Wind Energy
,
10
, pp.
81
97
.10.1002/we.210
2.
Walker
,
J. F.
, and
Jenkins
,
N.
,
1997
,
Wind Energy Technology
,
Wiley
,
New York
.
3.
Paraschivoiu
,
I.
,
2002
, “
Wind Turbine Design With Emphasis on Darrieus Concept
,” Ecole Polytechnique de Montreal, Canada.
4.
American Gear Manufacturers Association
,
2003
, “
American National Standard for Design and Specification of Gearboxes for Wind Turbines
,” Paper No. ANSI/AGMA/AWEA 6006-103.
5.
Quarton
,
D. C.
,
1998
, “
The Evolution of Wind Turbine Design Analysis—A Twenty Year Progress Review
,”
Wind Energy
,
1
, pp.
5
24
.10.1002/(SICI)1099-1824(199804)1:1+<5::AID-WE1>3.3.CO;2-9
6.
Hansen
,
M. O. L.
,
2008
,
Aerodynamics of Wind Turbines
,
Earthscan
,
London, UK
.
7.
Novak
,
P.
,
Ekelund
,
T.
,
Jovik
,
I.
, and
Schmidtbauer
,
B.
,
1995
, “
Modeling and Control of Variable-Speed Wind-Turbine Srive-System Dynamics
,”
IEEE Control Syst.
,
15
(
4
), pp.
28
38
.10.1109/37.408463
8.
Cho
,
J. R.
,
Lee
,
H. W.
, and
Ha
,
S. Y.
,
2005
, “
Finite Element Analysis of Resonant Sloshing Response in 2-D Baffled Tank
,”
J. Sound Vib.
,
288
(
4–5
), pp.
829
845
.10.1016/j.jsv.2005.01.019
9.
Yao
,
X.
,
Guo
,
C.
,
Zhong
,
M.
,
Li
,
Y.
,
Shan
,
G.
, and
Zhang
,
Y.
,
2009
, “
Wind Turbine Gearbox Fault Diagnosis Using Adaptive Morlet Wavelet Spectrum
,”
Proc. 2nd Int. Conference on Intelligent Computation Technology and Automation
, Hunan, China, pp.
580
583
.
10.
Musial
,
W.
,
Butterfield
,
S.
, and
McNiff
,
B.
,
2007
, “
Improving Wind Turbine Gearbox Reliability
,”
European Wind Energy Conference
, Milan, Italy, May 7–10, Paper No. NREL/CP-500-41548.
11.
Qin
,
D.
,
Wang
,
J.
, and
Lim
,
T. C.
,
2009
, “
Flexible Multibody Dynamic Modeling of a Horizontal Wind Turbine Drivetrain System
,”
ASME J. Mech. Design
,
131
(10), p.
114501
.10.1115/1.3211094
12.
Cho
,
J. R.
,
Song
,
J. M.
, and
Lee
,
J. K.
,
2001
, “
Finite Element Techniques for the Free-Vibration and Seismic Analysis of Liquid-Storage Tanks
,”
Finite Elements Anal. Design
,
37
(
6–7
), pp.
467
483
.10.1016/S0168-874X(00)00048-2
13.
Li
,
H.
, and
Chen
,
Z.
,
2007
, “
Transient Stability Analysis of Wind Turbines With Induction Generators Considering Blades and Shaft Flexibility
,”
Proc. the 33rd Annual Conference of the IEEE Industrial Electronics Society
, Taipei, Taiwan, November 5–8, pp.
1604
1609
.
14.
Garcia
,
M. C.
,
Sanz-Bobi
,
M. A.
, and
del Pico
,
J.
,
2006
, “
SIMAP: Intelligent System for Predictive Maintenance Allocation to the Health Condition Monitoring of a Windturbine Gearbox
,”
Comput. Industry
,
57
(
6
), pp.
552
568
.10.1016/j.compind.2006.02.011
15.
Torrance
,
V. B.
,
1972
, “
Wind Profiles Over a Suburban Site and Wind Effects on a Half-Scale Model Building
,”
Build. Sci.
,
7
(
1
), pp.
1
12
.10.1016/0007-3628(72)90030-8
16.
Midas
,
IT.
,
2010
, “
On-Line User's Manual of Midas NFX
,” Gyeonggi, Korea. Available at: http://www.nfx.co.kr/Downloads/
You do not currently have access to this content.