The nonlinear response and suppression of chaos by weak harmonic perturbation inside a triple well Φ6-Rayleigh oscillator combined to parametric excitations is studied in this paper. The main attention is focused on the dynamical properties of local bifurcations as well as global bifurcations including homoclinic and heteroclinic bifurcations. The original oscillator is transformed to averaged equations using the method of harmonic balance to obtain periodic solutions. The response curves show the saddle-node bifurcation and the multi-stability phenomena. Based on the Melnikov’s method, horseshoe chaos is found and its control is made by introducing an external periodic perturbation.

1.
Wei
,
Z.
, and
Pei
,
Y.
, 2001, “
Degenerate Bifurcation Analysis on Parametrically and Externally Excited Mechanical System
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
3
, pp.
689
709
.
2.
Siewe Siewe
,
M.
,
Moukam Kakmeni
,
F. M.
, and
Tchawoua
,
C.
, 2004, “
Resonance Oscillations and Homoclinic Bifurcation in a Φ6-Van der Pol Oscillators
,”
Chaos, Solitons Fractals
0960-0779,
21
, pp.
841
853
.
3.
Siewe Siewe
,
M.
,
Moukam Kakmeni
,
F. M.
,
Tchawoua
,
C.
, and
Woafo
,
P.
, 2005, “
Bifurcations and Chaos in Periodically and Externally Driven Φ6-Van der Pol Oscillators
,”
Physica A
0378-4371,
357
, pp.
383
396
.
4.
Belhaq
,
M.
, and
Houssni
,
M.
, 2000, “
Suppression of Chaos in Averaged Oscillator Driven by External and Parametric Excitations
,”
Chaos, Solitons Fractals
0960-0779,
11
, pp.
1237
1246
.
5.
Cao
,
H.
,
Chi
,
X.
, and
Chen
,
G.
, 2004, “
Suppressing or Inducing Chaos by Weak Resonant Excitations in an Externally-Forced Froude Pendulum
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
3
, pp.
1115
1120
.
6.
Rajasekar
,
S.
, 1993, “
Controlling of Chaos by Weak Periodic Perturbations in Duffingvan der Pol Oscillator
,”
Pramana
0304-4289,
41
, pp.
295
309
.
7.
Dabbs
,
M.
, and
Smith
,
P.
, 1996, “
Critical Forcing for Homoclinic and Heteroclinic Orbits of a Rotating Pendulum
,”
J. Sound Vib.
0022-460X,
2
, pp.
231
248
.
8.
Chacón
,
R.
, 2001, “
Maintenance and Suppression of Chaos by Weak Harmonic Perturbations, A Unified View
,”
Phys. Rev. Lett.
0031-9007,
86
, pp.
1737
1740
.
9.
Lenci
,
S.
, and
Rega
,
G.
, 2003, “
Optimal Control of Nonregular Dynamics in a Duffing Oscillator
,”
Nonlinear Dyn.
0924-090X,
33
, pp.
71
86
.
10.
Lenci
,
S.
, and
Rega
,
G.
, 2003, “
Optimal Control of Homoclinic Bifurcation: Theoretical Treatment and Practical Reduction of Safe Basin Erosion in the Helmholtz Oscillator
,”
J. Vib. Control
1077-5463,
3
, pp.
28l
316
.
11.
Lenci
,
S.
, and
Rega
,
G.
, 2004, “
Heteroclinic Bifurcations and Optimal Control in the Nonlinear Rocking Dynamics of Generic and Slender Rigid Blocks
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274 (in press).
12.
Cao
,
H.
,
Jiang
,
Y.
, and
Shan
,
Y.
, 2006, “
Primary Resonant Optimal Control for Nested Homoclinic and Heteroclinic Bifurcations in Single-DOF Nonlinear Oscillators
,”
J. Sound Vib.
0022-460X,
289
, pp.
229
244
.
13.
Lakshmanan
,
M.
, and
Murali
,
K.
, 1996,
Chaos in Nonlinear Oscillators: Controlling and Synchronization
,
World Scientific Series on Nonlinear Science Series A
, World Scientific, Singapore, Vol.
13
.
14.
Warminski
,
J.
, 2003, “
Regular, Chaotic and Hyperchaotic Vibrations of Nonlinear Systems With Self Parametric and External Excitations
,”
Mech. Autom. Control Robot.
,
14
, pp.
891
905
.
15.
Verhulst
,
F.
, 2001, “
Parametric and Autoparametric Resonance
,” Mathematisch Instituut University of Utrecht, Utrecht, The Netherlands, April 17.
16.
Szabelski
,
K.
, and
Warminski
,
J.
, 1995, “
Self-Excited System Vibrations With Parametric and External Excitations
,”
J. Sound Vib.
0022-460X,
4
, pp.
595
607
.
17.
Tchoukuegno
,
R.
, and
Woafo
,
P.
, 2002, “
Dynamics and Active Control of Motion of a Particle in a ϕ6 Potential With a Parametric Forcing
,”
Physica D
0167-2789,
167
, pp.
86
100
.
18.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillations
,
Wiley
, New York.
19.
Wiggins
,
S.
, 1990,
Introduction to Applied Nonlinear Dynamical Systems and Chaos
,
Springer-Verlag
, Berlin.
20.
Trueba
,
J. L.
,
Baltanás
,
J. P.
, and
Sanjuán
,
M. A. F.
, 2003, “
A Generalized Perturbed Pendulum
,”
Chaos, Solitons Fractals
0960-0779,
l5
, pp.
911
924
.
21.
Trueba
,
J. L.
,
Baltanás
,
J. P.
, and
Sanjuán
,
M. A. F.
, 2002, “
Nonlinearly Damped Oscillators
,”
Recent Res. Dev. Sound Vib.
,
1
, pp.
29
61
.
22.
Gradshteyn
,
I.
, and
Ryzhik
,
I.
, 1994,
Table of Integrals, Series and Products
,
Academic Press
, New York.
23.
Lenci
,
S.
, and
Rega
,
G.
, 2004, “
Higher-Order Melnikov Functions for Single-DOF Mechanical Oscillators: Theoretical Treatment and Applications
,”
Math. Probl. Eng.
1024-123X,
2
, pp.
145
168
.
24.
Chacón
,
R.
,
Balibrea
,
F.
, and
López
,
M. A.
, 2001, “
Role of Nonlinear Dissipation in the Suppression of Chaotic Escape From Potential Well
,”
Phys. Lett. A
0375-9601,
279
, pp.
38
46
.
25.
Lima
,
R.
, and
Pettini
,
M.
, 1990, “
Suppression of Chaos by Resonant Parametric Perturbations
,”
Phys. Rev. A
1050-2947,
41
, pp.
726
733
.
You do not currently have access to this content.