Abstract

Blood pumps, critical components in ventricular assist devices and extracorporeal membrane oxygenation systems, are primarily evaluated based on their ability to minimize blood damage through optimized design. Despite extensive research, the impact of impeller blade thickness and the proximity of rotating and stationary surfaces remains insufficiently explored. This study presents a comprehensive analysis, combining experimentally validated numerical simulations with an advanced Lagrangian approach, to compare the hemodynamic and hemolytic performance of three centrifugal pumps. These pumps share identical volutes but differ in impeller blade thickness. The selected operating point—a blood flow rate of 1 l/min and a pressure differential of 60 mm Hg—was chosen for its clinical relevance, particularly in pediatric applications. Computational fluid dynamics (CFD) simulations were employed to evaluate hemodynamic performance, while Lagrangian postprocessing was used to estimate the hemolysis index (HI) by tracing fluid particle trajectories. These analyses provided detailed insights into velocity, pressure, and shear stress (SS) distributions, with special attention given to critical regions near clearance gaps and solid boundaries. The results reveal a significant increase in hemolysis risk in these regions, especially as the size of opposing rotating and stationary surfaces increases. The pump with the thickest blades (pump 3) exhibited the poorest performance, with shear stress and hemolysis index negatively impacted by the increased blade thickness. Although specific to the pumps studied, these findings offer valuable guidance for the optimal design of blood pumps and suggest that the analytical approach could be applied to other sensitivity studies.

References

1.
Pugovkin
,
A. A.
,
Markov
,
A. G.
,
Selishchev
,
S. V.
,
Korn
,
L.
,
Walter
,
M.
,
Leonhardt
,
S.
,
Bockeria
,
L. A.
,
Bockeria
,
O. L.
, and
Telyshev
,
D. V.
,
2019
, “
Advances in Hemodynamic Analysis in Cardiovascular Diseases Investigation of Energetic Characteristics of Adult and Pediatric Sputnik Left Ventricular Assist Devices During Mock Circulation Support
,”
Cardiol. Res. Pract.
,
2019
, pp.
1
15
.10.1155/2019/4593174
2.
Johnson
,
K. N.
,
Carr
,
B.
,
Mychaliska
,
G. B.
,
Hirschl
,
R. B.
, and
Gadepalli
,
S. K.
,
2022
, “
Switching to Centrifugal Pumps May Decrease Hemolysis Rates Among Pediatric ECMO Patients
,”
Perfusion
,
37
(
2
), pp.
123
127
.10.1177/0267659120982572
3.
Kido
,
K.
,
Hoshi
,
H.
,
Watanabe
,
N.
,
Kataoka
,
H.
,
Ohuchi
,
K.
,
Asama
,
J.
,
Shinshi
,
T.
,
Yoshikawa
,
M.
, and
Takatani
,
S.
,
2006
, “
Computational Fluid Dynamics Analysis of the Pediatric Tiny Centrifugal Blood Pump (TinyPump)
,”
Artif. Organs
,
30
(
5
), pp.
392
399
.10.1111/j.1525-1594.2006.00231.x
4.
Chu
,
J. H.
,
Sarathy
,
S.
,
Ramesh
,
S.
,
Rudolph
,
K.
,
Raghavan
,
M. L.
, and
Badheka
,
A.
,
2023
, “
Risk Factors for Hemolysis With Centrifugal Pumps in Pediatric Extracorporeal Membrane Oxygenation: Is Pump Replacement an Answer?
,”
Perfusion
,
38
(
4
), pp.
771
780
.10.1177/02676591221082499
5.
Tompkins
,
L. H.
,
Gellman
,
B. N.
,
Prina
,
S. R.
,
Morello
,
G. F.
,
Roussel
,
T.
,
Kopechek
,
J. A.
,
Williams
,
S. J.
, et al.,
2022
, “
Development of Inspired Therapeutics Pediatric VAD: Computational Analysis and Characterization of VAD V3
,”
Cardiovasc. Eng. Technol.
,
13
(
4
), pp.
624
637
.10.1007/s13239-021-00602-2
6.
Tompkins
,
L. H.
,
Prina
,
S. R.
,
Gellman
,
B. N.
,
Morello
,
G. F.
,
Roussel
,
T.
,
Kopechek
,
J. A.
,
Williams
,
S. J.
, et al.,
2022
, “
Development of Inspired Therapeutics Pediatric VAD: Benchtop Evaluation of Impeller Performance and Torques for MagLev Motor Design
,”
Cardiovasc. Eng. Technol.
,
13
(
2
), pp.
307
317
.10.1007/s13239-021-00578-z
7.
Palazzolo
,
T.
,
Hirschhorn
,
M.
,
Garven
,
E.
,
Day
,
S.
,
Stevens
,
R. M.
,
Rossano
,
J.
,
Tchantchaleishvili
,
V.
, and
Throckmorton
,
A. L.
,
2022
, “
Technology Landscape of Pediatric Mechanical Circulatory Support Devices: A Systematic Review 2010–2021
,”
Artif. Organs
,
46
(
8
), pp.
1475
1490
.10.1111/aor.14242
8.
Antony
,
M.
,
Tom
,
M.
,
Varghese
,
J.
,
Joseph
,
S.
, and
Polachan
,
S.
,
2021
, “
Design, Analysis and Validation of Left Ventricular Assist Device
,”
Mater. Today Proc.
,
47
, pp.
5406
5409
.10.1016/j.matpr.2021.06.200
9.
Krystyna
,
G.
,
2011
, “
Circulatory Assistance: Basic Classification of Heart Assistance Methods and Devices
,”
Biocybern. Biomed. Eng.
,
31
(
1
), pp.
3
15
.10.1016/S0208-5216(11)70001-8
10.
Han
,
J.
, and
Trumble
,
D. R.
,
2019
, “
Cardiac Assist Devices: Early Concepts, Current Technologies, and Future Innovations
,”
Bioengineering
,
6
(
1
), p.
18
.10.3390/bioengineering6010018
11.
Denisov
,
M. V.
,
Telyshev
,
D. V.
,
Selishchev
,
S. V.
, and
Romanova
,
A. N.
,
2019
, “
Investigation of Hemocompatibility of Rotary Blood Pumps: The Case of the Sputnik Ventricular Assist Device
,”
Biomed. Eng. (NY)
,
53
(
3
), pp.
181
184
.10.1007/s10527-019-09904-1
12.
Qu
,
Y.
,
Guo
,
Z.
,
Zhang
,
J.
,
Li
,
G.
,
Zhang
,
S.
, and
Li
,
D.
,
2022
, “
Hemodynamic Investigation and in Vitro Evaluation of a Novel Mixed‐Flow Blood Pump
,”
Artif. Organs
,
46
(
8
), pp.
1533
1543
.10.1111/aor.14210
13.
Pinney
,
S. P.
,
Anyanwu
,
A. C.
,
Lala
,
A.
,
Teuteberg
,
J. J.
,
Uriel
,
N.
, and
Mehra
,
M. R.
,
2017
, “
Left Ventricular Assist Devices for Lifelong Support
,”
J. Am. Coll. Cardiol.
,
69
(
23
), pp.
2845
2861
.10.1016/j.jacc.2017.04.031
14.
Romanova
,
A. N.
,
Pugovkin
,
A. A.
,
Denisov
,
M. V.
,
Ephimov
,
I. A.
,
Gusev
,
D. V.
,
Walter
,
M.
,
Groth
,
T.
, et al.,
2022
, “
Hemolytic Performance in Two Generations of the Sputnik Left Ventricular Assist Device: A Combined Numerical and Experimental Study
,”
J. Funct. Biomater.
,
13
(
1
), p.
7
.10.3390/jfb13010007
15.
Li
,
Y.
,
Xi
,
Y.
,
Wang
,
H.
,
Sun
,
A.
,
Deng
,
X.
,
Chen
,
Z.
, and
Fan
,
Y.
,
2022
, “
A New Way to Evaluate Thrombotic Risk in Failure Heart and Ventricular Assist Devices
,”
Med. Novel Technol. Devices
,
16
, p.
100135
.10.1016/j.medntd.2022.100135
16.
Malone
,
G.
,
Abdelsayed
,
G.
,
Bligh
,
F.
,
Al Qattan
,
F.
,
Syed
,
S.
,
Varatharajullu
,
P.
,
Msellati
,
A.
, et al.,
2023
, “
Advancements in Left Ventricular Assist Devices to Prevent Pump Thrombosis and Blood Coagulopathy
,”
J. Anat.
,
242
(
1
), pp.
29
49
.10.1111/joa.13675
17.
Fraser
,
K. H.
,
Zhang
,
T.
,
Taskin
,
M. E.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2012
, “
A Quantitative Comparison of Mechanical Blood Damage Parameters in Rotary Ventricular Assist Devices: Shear Stress, Exposure Time and Hemolysis Index
,”
ASME J. Biomech. Eng.
,
134
(
8
), p.
81002
.10.1115/1.4007092
18.
Chiu
,
W.-C.
,
Slepian
,
M. J.
, and
Bluestein
,
D.
,
2014
, “
Thrombus Formation Patterns in the HeartMate II Ventricular Assist Device: Clinical Observations Can Be Predicted by Numerical Simulations
,”
ASAIO J.
,
60
(
2
), pp.
237
240
.10.1097/MAT.0000000000000034
19.
Thamsen
,
B.
,
Blümel
,
B.
,
Schaller
,
J.
,
Paschereit
,
C. O.
,
Affeld
,
K.
,
Goubergrits
,
L.
, and
Kertzscher
,
U.
,
2015
, “
Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps
,”
Artif. Organs
,
39
(
8
), pp.
651
659
.10.1111/aor.12542
20.
Thamsen
,
B.
,
Mevert
,
R.
,
Lommel
,
M.
,
Preikschat
,
P.
,
Gaebler
,
J.
,
Krabatsch
,
T.
,
Kertzscher
,
U.
,
Hennig
,
E.
, and
Affeld
,
K.
,
2016
, “
A Two-Stage Rotary Blood Pump Design With Potentially Lower Blood Trauma: A Computational Study
,”
Int. J. Artif. Organs
,
39
(
4
), pp.
178
183
.10.5301/ijao.5000482
21.
Wiegmann
,
L.
,
Boës
,
S.
,
de Zélicourt
,
D.
,
Thamsen
,
B.
,
Schmid Daners
,
M.
,
Meboldt
,
M.
, and
Kurtcuoglu
,
V.
,
2018
, “
Blood Pump Design Variations and Their Influence on Hydraulic Performance and Indicators of Hemocompatibility
,”
Ann. Biomed. Eng.
,
46
(
3
), pp.
417
428
.10.1007/s10439-017-1951-0
22.
Chan
,
C. H. H.
,
Ki
,
K. K.
,
Chu
,
I. Y.
,
Rolls
,
J.
,
Morris
,
S.
,
Lee
,
T. J.
,
Bindorfer
,
S.
,
Pauls
,
J. P.
,
Idachi
,
I.
, and
Fraser
,
J. F.
,
2021
, “
In Vitro Hemocompatibility Evaluation of the HeartWare Ventricular Assist Device Under Systemic, Pediatric and Pulmonary Support Conditions
,”
ASAIO J.
,
67
(
3
), pp.
270
275
.10.1097/MAT.0000000000001222
23.
Yu
,
J.
, and
Zhang
,
X.
,
2016
, “
Hydrodynamic and Hemolysis Analysis on Distance and Clearance Between Impeller and Diffuser of Axial Blood Pump
,”
J. Mech. Med. Biol.
,
16
(
2
), p.
1650014
.10.1142/S0219519416500147
24.
Krisher
,
J. A.
,
Malinauskas
,
R. A.
, and
Day
,
S. W.
,
2022
, “
The Effect of Blood Viscosity on Shear-Induced Hemolysis Using a Magnetically Levitated Shearing Device
,”
Artif. Organs
,
46
(
6
), pp.
1027
1039
.10.1111/aor.14172
25.
Telyshev
,
D. V.
,
Denisov
,
M. V.
, and
Selishchev
,
S. V.
,
2017
, “
The Effect of Rotor Geometry on the H–Q Curves of the Sputnik Implantable Pediatric Rotary Blood Pump
,”
Biomed. Eng. (NY)
,
50
(
6
), pp.
420
424
.10.1007/s10527-017-9669-8
26.
Li
,
Y.
,
Wang
,
H.
,
Xi
,
Y.
,
Sun
,
A.
,
Deng
,
X.
,
Chen
,
Z.
, and
Fan
,
Y.
,
2022
, “
A New Mathematical Numerical Model to Evaluate the Risk of Thrombosis in Three Clinical Ventricular Assist Devices
,”
Bioengineering
,
9
(
6
), p.
235
.10.3390/bioengineering9060235
27.
Borchers
,
P.
,
Winnersbach
,
P.
,
Kraemer
,
S.
,
Beckers
,
C.
,
Buhl
,
E. M.
,
Leonhardt
,
S.
,
Rossaint
,
R.
,
Walter
,
M.
,
Breuer
,
T.
, and
Bleilevens
,
C.
,
2022
, “
Comparison of the Hemocompatibility of an Axial and a Centrifugal Left Ventricular Assist Device in an in Vitro Test Circuit
,”
J. Clin. Med.
,
11
(
12
), p.
3431
.10.3390/jcm11123431
28.
Yang
,
W.-B.
,
Zhou
,
J.
,
Xiao
,
W.-H.
,
Peng
,
S.-J.
,
Hu
,
Y.-F.
,
Li
,
M.
, and
Wu
,
H.-C.
,
2022
, “
Effect of Conical Spiral Flow Channel and Impeller Parameters on Flow Field and Hemolysis Performance of an Axial Magnetic Blood Pump
,”
Processes
,
10
(
5
), p.
853
.10.3390/pr10050853
29.
Wang
,
Y.
,
Shen
,
P.
,
Zheng
,
M.
,
Fu
,
P.
,
Liu
,
L.
,
Wang
,
J.
, and
Yuan
,
L.
,
2019
, “
Influence of Impeller Speed Patterns on Hemodynamic Characteristics and Hemolysis of the Blood Pump
,”
Appl. Sci.
,
9
(
21
), p.
4689
.10.3390/app9214689
30.
Xu
,
Z.
,
Kong
,
F.
,
Tang
,
L.
,
Liu
,
M.
,
Wang
,
J.
, and
Qiu
,
N.
,
2022
, “
Effect of Blade Thickness on Internal Flow and Performance of a Plastic Centrifugal Pump
,”
Machines
,
10
(
1
), p.
61
.10.3390/machines10010061
31.
Denisov, M. V., and Telyshev, D. V., 2021, “Numerical Simulation of the Effect of Rotary Pump Geometry on Blood Flow in Patients Under Hemodynamic Support After Fontan Procedure,”
Biomed. Eng.
, 54, pp. 411–415. 10.1007/s10527-021-10051-9
32.
Aka
,
I. B.
,
Ozturk
,
C.
, and
Lazoglu
,
I.
,
2021
, “
Numerical Investigation of Volute Tongue Design on Hemodynamic Characteristics and Hemolysis of the Centrifugal Blood Pump
,”
SN Appl. Sci.
,
3
(
1
), p.
49
.10.1007/s42452-021-04142-1
33.
Li
,
Y.
,
Wang
,
H.
,
Xi
,
Y.
,
Sun
,
A.
,
Deng
,
X.
,
Chen
,
Z.
, and
Fan
,
Y.
,
2023
, “
Impact of Volute Design Features on Hemodynamic Performance and Hemocompatibility of Centrifugal Blood Pumps Used in ECMO
,”
Artif. Organs
,
47
(
1
), pp.
88
104
.10.1111/aor.14384
34.
Fang
,
P.
,
Du
,
J.
, and
Yu
,
S.
,
2020
, “
Impeller (Straight Blade) Design Variations and Their Influence on the Performance of a Centrifugal Blood Pump
,”
Int. J. Artif. Organs
,
43
(
12
), pp.
782
795
.10.1177/0391398820913559
35.
Li
,
Y.
,
Yu
,
J.
,
Wang
,
H.
,
Xi
,
Y.
,
Deng
,
X.
,
Chen
,
Z.
, and
Fan
,
Y.
,
2022
, “
Investigation of the Influence of Blade Configuration on the Hemodynamic Performance and Blood Damage of the Centrifugal Blood Pump
,”
Artif. Organs
,
46
(
9
), pp.
1817
1832
.10.1111/aor.14265
36.
Gil
,
A.
,
Navarro
,
R.
,
Quintero
,
P.
,
Mares
,
A.
,
Pérez
,
M.
, and
Montero
,
J. A.
,
2022
, “
CFD Analysis of the HVAD's Hemodynamic Performance and Blood Damage With Insight Into Gap Clearance
,”
Biomech. Model. Mechanobiol.
,
21
(
4
), pp.
1201
1215
.10.1007/s10237-022-01585-2
37.
Wu
,
P.
,
Huo
,
J.-D.
,
Zhang
,
Z.-J.
, and
Wang
,
C.-J.
,
2022
, “
The Influence of Non-Conformal Grid Interfaces on the Results of Large Eddy Simulation of Centrifugal Blood Pumps
,”
Artif. Organs
,
46
(
9
), pp.
1804
1816
.10.1111/aor.14263
38.
Han
,
D.
,
Leibowitz
,
J. L.
,
Han
,
L.
,
Wang
,
S.
,
He
,
G.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2022
, “
Computational Fluid Dynamics Analysis and Experimental Hemolytic Performance of Three Clinical Centrifugal Blood Pumps: Revolution, Rotaflow and CentriMag
,”
Med. Novel Technol. Devices
,
15
, p.
100153
.10.1016/j.medntd.2022.100153
39.
Song
,
X.
,
Throckmorton
,
A. L.
,
Wood
,
H. G.
,
Antaki
,
J. F.
, and
Olsen
,
D. B.
,
2004
, “
Quantitative Evaluation of Blood Damage in a Centrifugal VAD by Computational Fluid Dynamics
,”
ASME J. Fluids Eng.
,
126
(
3
), pp.
410
418
.10.1115/1.1758259
40.
Avci
,
M.
,
Heck
,
M.
,
O'Rear
,
E. A.
, and
Papavassiliou
,
D. V.
,
2021
, “
Hemolysis Estimation in Turbulent Flow for the FDA Critical Path Initiative Centrifugal Blood Pump
,”
Biomech. Model. Mechanobiol.
,
20
(
5
), pp.
1709
1722
.10.1007/s10237-021-01471-3
41.
Nikfar
,
M.
,
Razizadeh
,
M.
,
Zhang
,
J.
,
Paul
,
R.
,
Wu
,
Z. J.
, and
Liu
,
Y.
,
2020
, “
Prediction of Mechanical Hemolysis in Medical Devices Via a Lagrangian Strain-Based Multiscale Model
,”
Artif. Organs
,
44
(
8
), pp.
E348
E368
.10.1111/aor.13663
42.
Romanova
,
A.
, and
Telyshev
,
D.
,
2021
, “
Computational Fluid Dynamics Simulation of Hemolysis at Different Levels of Circulatory Support in the Left Ventricular Assist Device Sputnik
,”
J. Phys. Conf. Ser.
,
2091
(
1
), p.
012021
.10.1088/1742-6596/2091/1/012021
43.
Romanova, A. N., Pugovkin, A. A., and Telyshev, D. V., 2022, “Studies of the Hemocompatibility of the Sputnik Ventricular Assist Device in Constant and Pulse-Modulated Operating Modes,”
Biomed. Eng.
, 56, pp. 256–259. 10.1007/s10527-022-10214-2
44.
Amili
,
O.
,
MacIver
,
R.
, and
Coletti
,
F.
,
2020
, “
Magnetic Resonance Imaging Based Flow Field and Lagrangian Particle Tracking From a Left Ventricular Assist Device
,”
ASME J. Biomech. Eng.
,
142
(
2
), p.
021007
.10.1115/1.4043939
45.
Siemens PLM,
2021
, Software. Simcenter STAR-CCM+ User Guide, Version 13, Siemens Digital Industries Software, Plano, TX, accessed Nov. 18, 2024, https://plm.sw.siemens.com/en-US/simcenter/fluids-thermal-simulation/star-ccm/essentials/
46.
Garon
,
A.
, and
Farinas
,
M.-I.
,
2004
, “
Fast Three-Dimensional Numerical Hemolysis Approximation
,”
Artif. Organs
,
28
(
11
), pp.
1016
1025
.10.1111/j.1525-1594.2004.00026.x
47.
Taskin
,
M. E.
,
Fraser
,
K. H.
,
Zhang
,
T.
,
Wu
,
C.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2012
, “
Evaluation of Eulerian and Lagrangian Models for Hemolysis Estimation
,”
ASAIO J.
,
58
(
4
), pp.
363
372
.10.1097/MAT.0b013e318254833b
48.
ASTM International
,
2017
, “
Standard Practice for Assessment of Hemolysis in Continuous Flow Blood Pumps
,”
ASTM International
,
West Conshohocken, PA
, Standard No.
ASTM F1841‐97
.https://www.astm.org/f1841-19e01.html
You do not currently have access to this content.