Abstract

Atherosclerosis in carotid arteries depends mostly on hemodynamic parameters, and any disturbances in pulsatile flows may alter the hemodynamic parameters extensively. Gas emboli are one such source that can hinder and disturb standard blood flow patterns and potentially lead to occlusions and ischemia. To understand how gas embolism affects carotid artery hemodynamics, numerical simulation of coupled Newtonian two-phase laminar flow with interface tracking are performed in an anatomical image-based geometry with flow conditions closely approximating physiological flows. Bubble behavior and Pulsatile flow field changes are quantified. Significant deviation from flow without gas embolism is observed leading to nonstandard flow distributions. Results show that gas embolism promotes complex spatio-temporal variations in the carotid artery hemodynamics leading to higher time averaged shear stress values and greater regions of high oscillatory shear index, implying higher probability of atherosclerosis incidence. Depending on contact angle, gas emboli were found to be lodged in carotid sinus or exiting the carotid artery, which can potentially cause abnormalities in blood pressures, heart rates, and ischemia in downstream vasculature, respectively.

References

1.
Madhavan
,
S.
, and
Kemmerling
,
E. M. C.
,
2018
, “
The Effect of Inlet and Outlet Boundary Conditions in Image-Based CFD Modeling of Aortic Flow
,”
BioMed. Eng. OnLine
,
17
(
1
), pp.
1
20
.10.1186/s12938-018-0497-1
2.
Nørgaard
,
B. L.
,
Gaur
,
S.
,
Leipsic
,
J.
,
Ito
,
H.
,
Miyoshi
,
T.
,
Park
,
S.-J.
,
Zvaigzne
,
L.
,
Tzemos
,
N.
,
Jensen
,
J. M.
,
Hansson
,
N.
,
Ko
,
B.
,
Bezerra
,
H.
,
Christiansen
,
E. H.
,
Kaltoft
,
A.
,
Lassen
,
J. F.
,
Bøtker
,
H. E.
, and
Achenbach
,
S.
,
2015
, “
Influence of Coronary Calcification on the Diagnostic Performance of CT Angiography Derived FFR in Coronary Artery Disease: A Substudy of the NXT Trial
,”
JACC Cardiovasc. Imaging
,
8
(
9
), pp.
1045
1055
.10.1016/j.jcmg.2015.06.003
3.
Marsden
,
A. L.
,
2014
, “
Optimization in Cardiovascular Modeling
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
519
546
.10.1146/annurev-fluid-010313-141341
4.
Zhang
,
B.
,
Gu
,
J.
,
Qian
,
M.
,
Niu
,
L.
,
Zhou
,
H.
, and
Ghista
,
D.
,
2017
, “
Correlation Between Quantitative Analysis of Wall Shear Stress and Intima-Media Thickness in Atherosclerosis Development in Carotid Arteries
,”
Biomed. Eng. Online
,
16
(
1
), pp.
1
17
.10.1186/s12938-017-0425-9
5.
Caro
,
C. G.
,
2009
, “
Discovery of the Role of Wall Shear in Atherosclerosis
,”
Arterioscler. Thromb. Vasc. Biol.
,
29
(
2
), pp.
158
161
.10.1161/ATVBAHA.108.166736
6.
Gharahi
,
H.
,
Zambrano
,
B. A.
,
Zhu
,
D. C.
,
DeMarco
,
J. K.
, and
Baek
,
S.
,
2016
, “
Computational Fluid Dynamic Simulation of Human Carotid Artery Bifurcation Based on Anatomy and Volumetric Blood Flow Rate Measured With Magnetic Resonance Imaging
,”
Int. J. Adv. Eng. Sci. Appl. Math.
,
8
(
1
), pp.
46
60
.10.1007/s12572-016-0161-6
7.
Song
,
P.
,
Xia
,
W.
,
Zhu
,
Y.
,
Wang
,
M.
,
Chang
,
X.
,
Jin
,
S.
,
Wang
,
J.
, et al.,
2018
, “
Prevalence of Carotid Atherosclerosis and Carotid Plaque in Chinese Adults: A Systematic Review and Meta-Regression Analysis
,”
Atherosclerosis
,
276
, pp.
67
73
. 10.1016/j.atherosclerosis.2018.07.020
8.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
,
1999
, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA
,
282
(
21
), pp.
2035
2042
.10.1001/jama.282.21.2035
9.
Kumar
,
A.
,
Hung
,
O. Y.
,
Piccinelli
,
M.
,
Eshtehardi
,
P.
,
Corban
,
M. T.
,
Sternheim
,
D.
,
Yang
,
B.
,
Lefieux
,
A.
,
Molony
,
D. S.
,
Thompson
,
E. W.
,
Zeng
,
W.
,
Bouchi
,
Y.
,
Gupta
,
S.
,
Hosseini
,
H.
,
Raad
,
M.
,
Ko
,
Y.
,
Liu
,
C.
,
McDaniel
,
M. C.
,
Gogas
,
B. D.
,
Douglas
,
J. S.
,
Quyyumi
,
A. A.
,
Giddens
,
D. P.
,
Veneziani
,
A.
, and
Samady
,
H.
,
2018
, “
Low Coronary Wall Shear Stress is Associated With Severe Endothelial Dysfunction in Patients With Nonobstructive Coronary Artery Disease
,”
JACC Cardiovasc. Interv.
,
11
(
20
), pp.
2072
2080
.10.1016/j.jcin.2018.07.004
10.
Muth
,
C. M.
, and
Shank
,
E. S.
,
2000
, “
Gas Embolism
,”
N. Engl. J. Med.
,
342
(
7
), pp.
476
482
.10.1056/NEJM200002173420706
11.
Harmon
,
J. S.
,
Kabinejadian
,
F.
,
Seda
,
R.
,
Fabiilli
,
M. L.
,
Kuruvilla
,
S.
,
Kuo
,
C. C.
,
Greve
,
J. M.
,
Fowlkes
,
J. B.
, and
Bull
,
J. L.
,
2019
, “
Minimally Invasive Gas Embolization Using Acoustic Droplet Vaporization in a Rodent Model of Hepatocellular Carcinoma
,”
Sci. Rep.
,
9
(
1
), p.
11040
.10.1038/s41598-019-47309-y
12.
Perktold
,
K.
,
Resch
,
M.
, and
Florian
,
H.
,
1991
, “
Pulsatile Non-Newtonian Flow Characteristics in a Three-Dimensional Human Carotid Bifurcation Model
,”
ASME J. Biomech. Eng.
,
113
(
4
), pp.
464
475
.10.1115/1.2895428
13.
Birchall
,
D.
,
Zaman
,
A.
,
Hacker
,
J.
,
Davies
,
G.
, and
Mendelow
,
D.
,
2006
, “
Analysis of Haemodynamic Disturbance in the Atherosclerotic Carotid Artery Using Computational Fluid Dynamics
,”
Eur. Radiol.
,
16
(
5
), pp.
1074
1083
.10.1007/s00330-005-0048-6
14.
Rispoli
,
V. C.
,
Nielsen
,
J. F.
,
Nayak
,
K. S.
, and
Carvalho
,
J. L.
,
2015
, “
Computational Fluid Dynamics Simulations of Blood Flow Regularized by 3D Phase Contrast MRI
,”
Biomed. Eng. online
,
14
(
1
), pp.
1
23
. 10.1186/s12938-015-0104-7
15.
Cibis
,
M.
,
Potters
,
W. V.
,
Selwaness
,
M.
,
Gijsen
,
F. J.
,
Franco
,
O. H.
,
Arias Lorza
,
A. M.
,
de Bruijne
,
M.
,
Hofman
,
A.
,
van der Lugt
,
A.
,
Nederveen
,
A. J.
, and
Wentzel
,
J. J.
,
2016
, “
Relation Between Wall Shear Stress and Carotid Artery Wall Thickening MRI Versus CFD
,”
J. Biomech.
,
49
(
5
), pp.
735
741
.10.1016/j.jbiomech.2016.02.004
16.
Polanczyk
,
A.
,
Podgorski
,
M.
,
Wozniak
,
T.
,
Stefanczyk
,
L.
, and
Strzelecki
,
M.
,
2018
, “
Computational Fluid Dynamics as an Engineering Tool for the Reconstruction of Hemodynamics After Carotid Artery Stenosis Operation: A Case Study
,”
Medicina
,
54
(
3
), p.
42
.10.3390/medicina54030042
17.
Pinho
,
N.
,
Bento
,
M.
,
Sousa
,
L. C.
,
Pinto
,
S.
,
Castro
,
C. F.
,
António
,
C. C.
, and
Azevedo
,
E.
,
2017
, “
Patient-Specific Study of a Stenosed Carotid Artery Bifurcation Using Fluid–Structure Interactive Simulation
,”
Comput. Methods Appl. Sci.
, 27, pp.
495
503
.10.1007/978-3-319-68195-5_54
18.
Lopes
,
D.
,
Puga
,
H.
,
Teixeira
,
J. C.
, and
Teixeira
,
S. F.
,
2019
, “
Influence of Arterial Mechanical Properties on Carotid Blood Flow: Comparison of CFD and FSI Studies
,”
Int. J. Mech. Sci.
,
160
, pp.
209
218
.10.1016/j.ijmecsci.2019.06.029
19.
Safar
,
M. E.
,
Blacher
,
J.
,
Mourad
,
J. J.
, and
London
,
G. M.
,
2000
, “
Stiffness of Carotid Artery Wall Material and Blood Pressure in Humans: Application to Antihypertensive Therapy and Stroke Prevention
,”
Stroke
,
31
(
3
), pp.
782
790
.10.1161/01.STR.31.3.782
20.
Vahidi
,
B.
, and
Fatouraee
,
N.
,
2012
, “
Large Deforming Buoyant Embolus Passing Through a Stenotic Common Carotid Artery: A Computational Simulation
,”
J. Biomech.
,
45
(
7
), pp.
1312
1322
.10.1016/j.jbiomech.2012.01.020
21.
Roman
,
M. J.
,
Pickering
,
T. G.
,
Schwartz
,
J. E.
,
Pini
,
R.
, and
Devereux
,
R. B.
,
2001
, “
Relation of Blood Pressure Variability to Carotid Atherosclerosis and Carotid Artery and Left Ventricular Hypertrophy
,”
Arterioscler. Thromb. Vasc. Biol.
,
21
(
9
), pp.
1507
1511
.10.1161/hq0901.095149
22.
Stroud
,
J. S.
,
Berger
,
S. A.
, and
Saloner
,
D.
,
2002
, “
Numerical Analysis of Flow Through a Severely Stenotic Carotid Artery Bifurcation
,”
ASME J. Biomech. Eng.
,
124
(
1
), pp.
9
20
.10.1115/1.1427042
23.
Chen
,
S.-T.
,
Tang
,
L.-M.
,
Lee
,
T.-H.
,
Ro
,
L.-S.
,
Lyu
,
R.-K.
, and
Chen
,
S.-T.
,
2000
, “
Transient Global Amnesia and Amaurosis Fugax in a Patient With Common Carotid Artery Occlusion: A Case Report
,”
Angiology
,
51
(
3
), pp.
257
261
.10.1177/000331970005100311
24.
Shibeshi
,
S. S.
, and
Collins
,
W. E.
,
2005
, “
The Rheology of Blood Flow in a Branched Arterial System
,”
Appl. Rheol.
15
(
6
), pp.
398
405
.10.1515/arh-2005-0020
25.
Gidaspow
,
D.
, and
Huang
,
J.
,
2009
, “
Kinetic Theory-Based Model for Blood Flow and Its Viscosity
,”
Ann Biomed. Eng.
,
37
(
8
), pp.
1534
1545
.10.1007/s10439-009-9720-3
26.
Venkatesan
,
J.
,
Sankar
,
D. S.
,
Hemalatha
,
K.
, and
Yatim
,
Y.
,
2013
, “
Mathematical Analysis of Casson Fluid Model for Blood Rheology in Stenosed Narrow Arteries
,”
J. Appl. Math.
,
2013
, pp.
1
11
.10.1155/2013/583809
27.
Hrnčíř
,
E.
, and
Rosina
,
J.
,
1997
, “
Surface Tension of Blood
,”
Physiol. Res.
,
46
(
4
), pp.
319
321
.https://pubmed.ncbi.nlm.nih.gov/9728499/
28.
Zhou
,
C.
,
Yue
,
P.
,
Feng
,
J. J.
,
Ollivier-Gooch
,
C. F.
, and
Hu
,
H. H.
,
2010
, “
3D Phase-Field Simulations of Interfacial Dynamics in Newtonian and Viscoelastic Fluids
,”
J. Comput. Phys.
,
229
(
2
), pp.
498
511
.10.1016/j.jcp.2009.09.039
29.
Hua
,
H.
,
Shin
,
J.
, and
Kim
,
J.
,
2014
, “
Level Set, Phase-Field, and Immersed Boundary Methods for Two-Phase Fluid Flows
,”
ASME J. Fluids Eng.
,
136
(
2
), p.
021301
.10.1115/1.4025658
30.
Gibou
,
F.
,
Fedkiw
,
R.
, and
Osher
,
S.
,
2018
, “
A Review of Level-Set Methods and Some Recent Applications
,”
J. Comput. Phys.
,
353
, pp.
82
109
.10.1016/j.jcp.2017.10.006
31.
Palmen
,
D. E. M.
,
Van De Vosse
,
F. N.
,
Janssen
,
J. D.
, and
Van Dongen
,
M. E. H.
,
1994
, “
Analysis of the Flow in Stenosed Carotid Artery Bifurcation Models—Hydrogen-Bubble Visualization
,”
J. Biomech.
,
27
(
5
), pp.
581
590
.10.1016/0021-9290(94)90067-1
32.
Marshall
,
I.
,
Papathanasopoulou
,
P.
, and
Wartolowska
,
K.
,
2004
, “
Carotid Flow Rates and Flow Division at the Bifurcation in Healthy Volunteers
,”
Physiol. Meas.
,
25
(
3
), pp.
691
697
.10.1088/0967-3334/25/3/009
33.
Garstecki
,
P.
,
Fuerstman
,
M. J.
,
Stone
,
H. A.
, and
Whitesides
,
G. M.
,
2006
, “
Formation of Droplets and Bubbles in a Microfluidic T-Junction—Scaling and Mechanism of Break-Up
,”
Lab Chip
,
6
(
3
), pp.
437
446
.10.1039/b510841a
34.
Eshpuniyani
,
B.
,
Fowlkes
,
J. B.
, and
Bull
,
J. L.
,
2008
, “
A Boundary Element Model of Microbubble Sticking and Sliding in the Microcirculation
,”
Int. J. Heat Mass Transfer
,
51
(
23–24
), pp.
5700
5711
.10.1016/j.ijheatmasstransfer.2008.04.050
35.
Dolan
,
J. M.
,
Kolega
,
J.
, and
Meng
,
H.
,
2013
, “
High Wall Shear Stress and Spatial Gradients in Vascular Pathology: A Review
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1411
1427
.10.1007/s10439-012-0695-0
You do not currently have access to this content.