Abstract

Painful herniated discs are treated surgically by removing extruded nucleus pulposus (NP) material (nucleotomy). NP removal through enzymatic digestion is also commonly performed to initiate degenerative changes to study potential biological repair strategies. Experimental and computational studies have shown a decrease in disc stiffness with nucleotomy under single loading modalities, such as compression-only or bending-only loading. However, studies that apply more physiologically relevant loading conditions, such as compression in combination with bending or torsion, have shown contradicting results. We used a previously validated bone–disc–bone finite element model (Control) to create a Nucleotomy model to evaluate the effect of dual loading conditions (compression with torsion or bending) on intradiscal deformations. While disc joint stiffness decreased with nucleotomy under single loading conditions, as commonly reported in the literature, dual loading resulted in an increase in bending stiffness. More specifically, dual loading resulted in a 40% increase in bending stiffness under flexion and extension and a 25% increase in stiffness under lateral bending. The increase in bending stiffness was due to an increase and shift in compressive stress, where peak stresses migrated from the NP–annulus interface to the outer annulus. In contrast, the decrease in torsional stiffness was due to greater fiber reorientation during compression. In general, large radial strains were observed with nucleotomy, suggesting an increased risk for delamination or degenerative remodeling. In conclusion, the effect of nucleotomy on disc mechanics depends on the type and complexity of applied loads.

References

1.
O'Connell
,
G. D.
,
Leach
,
J. K.
, and
Klineberg
,
E. O.
,
2015
, “
Tissue Engineering a Biological Repair Strategy for Lumbar Disc Herniation
,”
BioResearch Open Access
,
4
(
1
), pp.
431
445
.10.1089/biores.2015.0034
2.
Cannella
,
M.
,
Arthur
,
A.
,
Allen
,
S.
,
Keane
,
M.
,
Joshi
,
A.
,
Vresilovic
,
E.
, and
Marcolongo
,
M.
,
2008
, “
The Role of the Nucleus Pulposus in Neutral Zone Human Lumbar Intervertebral Disc Mechanics
,”
J. Biomech.
,
41
(
10
), pp.
2104
2111
.10.1016/j.jbiomech.2008.04.037
3.
Huang
,
J.
,
Yan
,
H.
,
Jian
,
F.
,
Wang
,
X.
, and
Li
,
H.
,
2015
, “
Numerical Analysis of the Influence of Nucleus Pulposus Removal on the Biomechanical Behavior of a Lumbar Motion Segment
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
14
), pp.
1516
1524
.10.1080/10255842.2014.921815
4.
Meakin
,
J.
, and
Hukins
,
D.
,
2000
, “
Effect of Removing the Nucleus Pulposus on the Deformation of the Annulus Fibrosus During Compression of the Intervertebral Disc
,”
J. Biomech.
,
33
(
5
), pp.
575
580
.10.1016/S0021-9290(99)00215-8
5.
O'Connell
,
G. D.
,
Malhotra
,
N. R.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2011
, “
The Effect of Discectomy and the Dependence on Degeneration of Human Intervertebral Disc Strain in Axial Compression
,”
Spine
,
36
(
21
), p.
1765
.10.1097/BRS.0b013e318216752f
6.
Seroussi
,
R. E.
,
Krag
,
M. H.
,
Muller
,
D. L.
, and
Pope
,
M. H.
,
1989
, “
Internal Deformations of Intact and Denucleated Human Lumbar Discs Subjected to Compression, Flexion, and Extension Loads
,”
J. Orthop. Res.
,
7
(
1
), pp.
122
131
.10.1002/jor.1100070117
7.
Joshi
,
A. B.
,
2004
, “
Mechanical Behavior of the Human Lumbar Intervertebral Disc With Polymeric Hydrogel Nucleus Implant: An Experimental and Finite Element Study
,”
Ph.D. dissertation
, Drexel University, Philadelphia, PA.https://idea.library.drexel.edu/islandora/object/idea%3A272/datastream/OBJ/download/Mechanical_behavior_of_the_human_lumbar_intervertebral_disc_with_polymeric_hydrogel_nucleus_implant__an_experimental_and_finite_element_study.pdf
8.
Meakin
,
J. R.
,
Reid
,
J. E.
, and
Hukins
,
D. W.
,
2001
, “
Replacing the Nucleus Pulposus of the Intervertebral Disc
,”
Clin. Biomech.
,
16
(
7
), pp.
560
565
.10.1016/S0268-0033(01)00042-0
9.
Strange
,
D. G. T.
,
Fisher
,
S. T.
,
Boughton
,
P. C.
,
Kishen
,
T. J.
, and
Diwan
,
A. D.
,
2010
, “
Restoration of Compressive Loading Properties of Lumbar Discs With a Nucleus Implant—A Finite Element Analysis Study
,”
Spine J.
,
10
(
7
), pp.
602
609
.10.1016/j.spinee.2010.04.015
10.
Bezci
,
S. E.
,
Eleswarapu
,
A.
,
Klineberg
,
E. O.
, and
O'Connell
,
G. D.
,
2018
, “
Contribution of Facet Joints, Axial Compression, and Composition to Human Lumbar Disc Torsion Mechanics
,”
J. Orthop. Res.
, epub.10.1002/jor.23870
11.
Bezci
,
S. E.
,
Klineberg
,
E. O.
, and
O'Connell
,
G. D.
,
2018
, “
Effects of Axial Compression and Rotation Angle on Torsional Mechanical Properties of Bovine Caudal Discs
,”
J. Mech. Behav. Biomed. Mater.
,
77
, pp.
353
359
.10.1016/j.jmbbm.2017.09.022
12.
O'Connell
,
G. D.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2007
, “
Comparison of Animals Used in Disc Research to Human Lumbar Disc Geometry
,”
Spine (Phila Pa 1976)
,
32
(
3
), pp.
328
333
.10.1097/01.brs.0000253961.40910.c1
13.
Schmidt
,
H.
,
Bashkuev
,
M.
,
Dreischarf
,
M.
,
Rohlmann
,
A.
,
Duda
,
G.
,
Wilke
,
H. J.
, and
Shirazi-Adl
,
A.
,
2013
, “
Computational Biomechanics of a Lumbar Motion Segment in Pure and Combined Shear Loads
,”
J. Biomech.
,
46
(
14
), pp.
2513
2521
.10.1016/j.jbiomech.2013.06.038
14.
Shirazi-Adl
,
A.
,
Ahmed
,
A. M.
, and
Shrivastava
,
S. C.
,
1986
, “
Mechanical Response of a Lumbar Motion Segment in Axial Torque Alone and Combined With Compression
,”
Spine (Phila Pa 1976)
,
11
(
9
), pp.
914
927
.10.1097/00007632-198611000-00012
15.
Amin
,
D.
,
Lawless
,
I.
,
Sommerfeld
,
D.
,
Stanley
,
R.
,
Ding
,
B.
, and
Costi
,
J.
,
2016
, “
The Effect of Six Degree of Freedom Loading Sequence on the In-Vitro Compressive Properties of Human Lumbar Spine Segments
,”
J. Biomech.
,
49
(
14
), pp.
3407
3414
.10.1016/j.jbiomech.2016.09.009
16.
Berger-Roscher
,
N.
,
Casaroli
,
G.
,
Rasche
,
V.
,
Villa
,
T.
,
Galbusera
,
F.
, and
Wilke
,
H.-J.
,
2017
, “
Influence of Complex Loading Conditions on Intervertebral Disc Failure
,”
Spine
,
42
(
2
), pp.
E78
E85
.10.1097/BRS.0000000000001699
17.
Casaroli
,
G.
,
Villa
,
T.
,
Bassani
,
T.
,
Berger-Roscher
,
N.
,
Wilke
,
1H.-J.
, and
Galbusera
,
F.
,
2017
, “
Numerical Prediction of the Mechanical Failure of the Intervertebral Disc Under Complex Loading Conditions
,”
Mater.
,
10
(
1
), p.
31
.10.3390/ma10010031
18.
Ivicsics
,
M. F.
,
Bishop
,
N. E.
,
Puschel
,
K.
,
Morlock
,
M. M.
, and
Huber
,
G.
,
2014
, “
Increase in Facet Joint Loading After Nucleotomy in the Human Lumbar Spine
,”
J. Biomech.
,
47
(
7
), pp.
1712
1717
.10.1016/j.jbiomech.2014.02.021
19.
Frei
,
H.
,
Oxland
,
T. R.
,
Rathonyi
,
G. C.
, and
Nolte
,
L. P.
,
2001
, “
The Effect of Nucleotomy on Lumbar Spine Mechanics in Compression and Shear Loading
,”
Spine (Phila Pa 1976)
,
26
(
19
), pp.
2080
2089
.10.1097/00007632-200110010-00007
20.
Shirazi-Adl
,
A.
,
1992
, “
Finite-Element Simulation of Changes in the Fluid Content of Human Lumbar Discs. Mechanical and Clinical Implications
,”
Spine (Phila Pa 1976)
,
17
(
2
), pp.
206
212
.10.1097/00007632-199202000-00015
21.
Yang
,
B.
,
Lu
,
Y.
,
Um
,
C.
, and
O'Connell
,
G. D.
,
2019
, “
Relative Nucleus Pulposus Area and Position Alters Disc Joint Mechanics
,”
ASME J. Biomech. Eng.
,
141
(
5
), p.
051004
.10.1115/1.4043029
22.
Peloquin
,
J. M.
,
Yoder
,
J. H.
,
Jacobs
,
N. T.
,
Moon
,
S. M.
,
Wright
,
A. C.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2014
, “
Human L3L4 Intervertebral Disc Mean 3D Shape, Modes of Variation, and Their Relationship to Degeneration
,”
J. Biomech.
,
47
(
10
), pp.
2452
2459
.10.1016/j.jbiomech.2014.04.014
23.
Moon
,
S. M.
,
Yoder
,
J. H.
,
Wright
,
A. C.
,
Smith
,
L. J.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2013
, “
Evaluation of Intervertebral Disc Cartilaginous Endplate Structure Using Magnetic Resonance Imaging
,”
Eur. Spine J.
,
22
(
8
), pp.
1820
1828
.10.1007/s00586-013-2798-1
24.
Rodriguez
,
A. G.
,
Rodriguez-Soto
,
A. E.
,
Burghardt
,
A. J.
,
Berven
,
S.
,
Majumdar
,
S.
, and
Lotz
,
J. C.
,
2012
, “
Morphology of the Human Vertebral Endplate
,”
J. Orthop. Res.
,
30
(
2
), pp.
280
287
.10.1002/jor.21513
25.
Marchand
,
F.
, and
Ahmed
,
A. M.
,
1990
, “
Investigation of the Laminate Structure of Lumbar Disc Anulus Fibrosus
,”
Spine
,
15
(
5
), pp.
402
410
.10.1097/00007632-199005000-00011
26.
Holzapfel
,
G. A.
,
Schulze-Bauer
,
C.
,
Feigl
,
G.
, and
Regitnig
,
P.
,
2005
, “
Single Lamellar Mechanics of the Human Lumbar Anulus Fibrosus
,”
Biomech. Model. Mechanobiol.
,
3
(
3
), pp.
125
140
.10.1007/s10237-004-0053-8
27.
Skaggs
,
D. L.
,
Weidenbaum
,
M.
,
Iatridis
,
J. C.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
,
1994
, “
Regional Variation in Tensile Properties and Biochemical Composition of the Human Lumbar Anulus Fibrosus
,”
Spine
,
19
(
12
), pp.
1310
1319
.10.1097/00007632-199406000-00002
28.
Dreischarf
,
M.
,
Zander
,
T.
,
Shirazi-Adl
,
A.
,
Puttlitz
,
C. M.
,
Adam
,
C. J.
,
Chen
,
C. S.
,
Goel
,
V. K.
,
Kiapour
,
A.
,
Kim
,
Y. H.
,
Labus
,
K. M.
,
Little
,
J. P.
,
Park
,
W. M.
,
Wang
,
Y. H.
,
Wilke
,
H. J.
,
Rohlmann
,
A.
, and
Schmidt
,
H.
,
2014
, “
Comparison of Eight Published Static Finite Element Models of the Intact Lumbar Spine: Predictive Power of Models Improves When Combined Together
,”
J. Biomech.
,
47
(
8
), pp.
1757
1766
.10.1016/j.jbiomech.2014.04.002
29.
Yang
,
B.
, and
O'Connell
,
G. D.
,
2017
, “
Effect of Collagen Fibre Orientation on Intervertebral Disc Torsion Mechanics
,”
Biomech. Model. Mechanobiol.
,
16
(
6
), pp.
2005
2015
.10.1007/s10237-017-0934-2
30.
Cassidy
,
J.
,
Hiltner
,
A.
, and
Baer
,
E.
,
1989
, “
Hierarchical Structure of the Intervertebral Disc
,”
Connect. Tissue Res.
,
23
(
1
), pp.
75
88
.10.3109/03008208909103905
31.
Beckstein
,
J. C.
,
Sen
,
S.
,
Schaer
,
T. P.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2008
, “
Comparison of Animal Discs Used in Disc Research to Human Lumbar Disc: Axial Compression Mechanics and Glycosaminoglycan Content
,”
Spine (Phila Pa 1976)
,
33
(
6
), pp.
E166
E173
.10.1097/BRS.0b013e318166e001
32.
Heuer
,
F.
,
Schmidt
,
H.
,
Klezl
,
Z.
,
Claes
,
L.
, and
Wilke
,
H.-J.
,
2007
, “
Stepwise Reduction of Functional Spinal Structures Increase Range of Motion and Change Lordosis Angle
,”
J. Biomech.
,
40
(
2
), pp.
271
280
.10.1016/j.jbiomech.2006.01.007
33.
Markolf
,
K. L.
,
1972
, “
Deformation of the Thoracolumbar Intervertebral Joints in Response to External Loads: A Biomechanical Study Using Autopsy Material
,”
J. Bone Jt. Surg. Am.
,
54
(
3
), pp.
511
533
.10.2106/00004623-197254030-00005
34.
Cook
,
D. J.
,
Yeager
,
M. S.
,
Thampi
,
S. S.
,
Whiting
,
D. M.
, and
Cheng
,
B. C.
,
2015
, “
Range of Motion of the Intact Lumbar Segment: A Multivariate Study of 42 Lumbar Spines
,”
Int. J. Spine Surg.
,
9
, p.
9
.10.14444/2009
35.
Pearcy
,
M.
,
Portek
,
I.
, and
Shepherd
,
J.
,
1984
, “
Three-Dimensional X-Ray Analysis of Normal Movement in the Lumbar Spine
,”
Spine
,
9
(
3
), pp.
294
297
.10.1097/00007632-198404000-00013
36.
Yamamoto
,
I.
,
Panjabi
,
M. M.
,
Crisco
,
T.
, and
Oxland
,
T. O.
,
1989
, “
Three-Dimensional Movements of the Whole Lumbar Spine and Lumbosacral Joint
,”
Spine (Phila Pa 1976)
,
14
(
11
), pp.
1256
1260
.10.1097/00007632-198911000-00020
37.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
FEBio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011005
.10.1115/1.4005694
38.
Walter
,
B. A.
,
Korecki
,
C. L.
,
Purmessur
,
D.
,
Roughley
,
P. J.
,
Michalek
,
A. J.
, and
Iatridis
,
J. C.
,
2011
, “
Complex Loading Affects Intervertebral Disc Mechanics and Biology
,”
Osteoarthritis Cartilage
,
19
(
8
), pp.
1011
1018
.10.1016/j.joca.2011.04.005
39.
Reitmaier
,
S.
,
Volkheimer
,
D.
,
Berger-Roscher
,
N.
,
Wilke
,
H.-J.
, and
Ignatius
,
A.
,
2014
, “
Increase or Decrease in Stability After Nucleotomy? Conflicting In Vitro and In Vivo Results in the Sheep Model
,”
J. R. Soc. Interface
,
11
(
100
), p.
20140650
.10.1098/rsif.2014.0650
40.
Costi
,
J. C. E. L.
, and
O'Connell
,
G. D.
,
2020
, “
Spine Biomechanical Testing Methodologies: The Controversy of Consensus Vs Scientific Evidence
,”
JOR Spine, Spec. Issue: Protoc., Methods, Resour. Spine Res.
, 4(1), p. e1138.10.1002/jsp2.1138
41.
Zhou, M.
,
Werbner
,
B.
, and
O'Connell
,
G.
,
2020
, “
Historical Review of Combined Experimental and Computational Approaches for Investigating Annulus Fibrosus Mechanics
,”
ASME J. Biomech. Eng.
, 142(3), p. 030802.10.1115/1.4046186
42.
Yang
,
B.
, and
O'Connell
,
G. D.
,
2019
, “
Intervertebral Disc Swelling Maintains Strain Homeostasis Throughout the Annulus Fibrosus: A Finite Element Analysis of Healthy and Degenerated Discs
,”
Acta Biomater.
,
100
, pp.
61
74
.10.1016/j.actbio.2019.09.035
43.
Tavakoli
,
J.
,
Amin
,
D. B.
,
Freeman
,
B. J.
, and
Costi
,
J. J.
,
2018
, “
The Biomechanics of the Inter- Lamellar Matrix and the Lamellae During Progression to Lumbar Disc Herniation: Which is the Weakest Structure?
,”
Ann. Biomed. Eng.
,
46
(
9
), pp.
1280
12
.10.1007/s10439-018-2056-0
44.
Vernon-Roberts
,
B.
,
Fazzalari
,
N. L.
, and
Manthey
,
B. A.
,
1997
, “
Pathogenesis of Tears of the Annulus Investigated by Multiple-Level Transaxial Analysis of the T12-L1 Disc
,”
Spine (Phila Pa 1976)
,
22
(
22
), pp.
2641
2646
.10.1097/00007632-199711150-00012
45.
Vernon-Roberts
,
B.
,
Moore
,
R. J.
, and
Fraser
,
R. D.
,
2007
, “
The Natural History of Age-Related Disc Degeneration: The Pathology and Sequelae of Tears
,”
Spine (Phila Pa 1976)
,
33
(
25
), pp.
2767
2773
.
46.
Putzier
,
M.
,
Schneider
,
S. V.
,
Funk
,
J. F.
,
Tohtz
,
S. W.
, and
Perka
,
C.
,
2005
, “
The Surgical Treatment of the Lumbar Disc Prolapse: Nucleotomy With Additional Transpedicular Dynamic Stabilization Versus Nucleotomy Alone
,”
Spine
,
30
(
5
), pp.
E109
E114
.10.1097/01.brs.0000154630.79887.ef
47.
Yorimitsu
,
E.
,
Chiba
,
K.
,
Toyama
,
Y.
, and
Hirabayashi
,
K.
,
2001
, “
Long-Term Outcomes of Standard Discectomy for Lumbar Disc Herniation: A Follow-Up Study of More Than 10 Years
,”
Spine (Phila Pa 1976)
,
26
(
6
), pp.
652
657
.10.1097/00007632-200103150-00019
48.
O'Connell
,
G. D.
,
Guerin
,
H. L.
, and
Elliott
,
D. M.
,
2009
, “
Theoretical and Uniaxial Experimental Evaluation of Human Annulus Fibrosus Degeneration
,”
ASME J. Biomech. Eng.
,
131
(
11
), p.
111007
.10.1115/1.3212104
49.
Werbner
,
B.
,
Spack
,
K.
, and
O'Connell
,
G. D.
,
2019
, “
Bovine Annulus Fibrosus Hydration Affects Rate-Dependent Failure Mechanics in Tension
,”
J. Biomech.
,
89
, pp.
34
39
.10.1016/j.jbiomech.2019.04.008
50.
Wilke
,
H. J.
,
Schmidt
,
H.
,
Werner
,
K.
,
Schmolz
,
W.
, and
Drumm
,
J.
,
2006
, “
Biomechanical Evaluation of a New Total Posterior-Element Replacement System
,”
Spine (Phila Pa 1976)
,
31
(
24
), pp.
2790
2796
, discussion 2797.10.1097/01.brs.0000245872.45554.c0
51.
Elliott
,
D. M.
,
Yerramalli
,
C. S.
,
Beckstein
,
J. C.
,
Boxberger
,
J. I.
,
Johannessen
,
W.
, and
Vresilovic
,
E. J.
,
2008
, “
The Effect of Relative Needle Diameter in Puncture and Sham Injection Animal Models of Degeneration
,”
Spine (Phila Pa 1976)
,
33
(
6
), pp.
588
596
.10.1097/BRS.0b013e318166e0a2
52.
Michalek
,
A. J.
,
Funabashi
,
K. L.
, and
Iatridis
,
J. C.
,
2010
, “
Needle Puncture Injury of the Rat Intervertebral Disc Affects Torsional and Compressive Biomechanics Differently
,”
Eur. Spine J.
,
19
(
12
), pp.
2110
2116
.10.1007/s00586-010-1473-z
53.
Michalek
,
A. J.
, and
Iatridis
,
J. C.
,
2012
, “
Height and Torsional Stiffness Are Most Sensitive to Annular Injury in Large Animal Intervertebral Discs
,”
Spine J.
,
12
(
5
), pp.
425
432
.10.1016/j.spinee.2012.04.001
54.
Haughton
,
V. M.
,
Rogers
,
B.
,
Meyerand
,
M. E.
, and
Resnick
,
D. K.
,
2002
, 1 “
Measuring the Axial Rotation of Lumbar Vertebrae In Vivo With MR Imaging
,”
AJNR Am. J. Neuroradiol.
,
23
(
7
), pp.
1110
1116
.https://www.researchgate.net/publication/11218405_Measuring_the_Axial_Rotation_of_Lumbar_Vertebrae_in_Vivo_with_MR_Imaging
55.
Long
,
R. G.
,
Burki
,
A.
,
Zysset
,
P.
,
Eglin
,
D.
,
Grijpma
,
D. W.
,
Blanquer
,
S. B. G.
,
Hecht
,
A. C.
, and
Iatridis
,
J. C.
,
2016
, “
Mechanical Restoration and Failure Analyses of a Hydrogel and Scaffold Composite Strategy for Annulus Fibrosus Repair
,”
Acta Biomater.
,
30
, pp.
116
125
.10.1016/j.actbio.2015.11.015
56.
Guterl
,
C. C.
,
See
,
E. Y.
,
Blanquer
,
S. B. G.
,
Pandit
,
A.
,
Ferguson
,
S. J.
,
Benneker
,
L. M.
,
Grijpma
,
D. W.
,
Sakai
,
D.
,
Eglin
,
D.
,
Alini
,
M.
,
Iatridis
,
J. C.
, and
Grad
,
S.
,
2013
, “
Challenges and Strategies in the Repair of Ruptured Annulus Fibrosus
,”
Eur. Cells Mater.
,
25
, pp.
1
21
.10.22203/eCM.v025a01
57.
Gorensek
,
M.
,
Jaksimovic
,
C.
,
Kregar-Velikonja
,
N.
,
Gorensek
,
M.
,
Knezevic
,
M.
,
Jeras
,
M.
,
Pavlovcic
,
V.
, and
Cor
,
A.
,
2004
, “
Nucleus Pulposus Repair With Cultured Autologous Elastic Cartilage Derived Chondrocytes
,”
Cell Mol. Biol. Lett.
,
9
(
2
), pp.
363
373
.
58.
Nolan
,
D. R.
,
Gower
,
A. L.
,
Destrade
,
M.
,
Ogden
,
R. W.
, and
McGarry
,
J. P.
,
2014
, “
A Robust Anisotropic Hyperelastic Formulation for the Modelling of Soft Tissue
,”
J. Mech. Behav. Biomed. Mater.
,
39
, pp.
48
60
.10.1016/j.jmbbm.2014.06.016
59.
Ateshian
,
G. A.
,
2007
, “
On the Theory of Reactive Mixtures for Modeling Biological Growth
,”
Biomech. Model. Mechanobiol.
,
6
(
6
), pp.
423
445
.10.1007/s10237-006-0070-x
60.
Vadalà
,
G.
,
Russo
,
F.
,
Pattappa
,
G.
,
Schiuma
,
D.
,
Peroglio
,
M.
,
Benneker
,
L. M.
,
Grad
,
S.
,
Alini
,
M.
, and
Denaro
,
V.
,
2013
, “
The Transpedicular Approach as an Alternative Route for Intervertebral Disc Regeneration
,”
Spine
,
38
(
6
), pp.
E319
E324
.10.1097/BRS.0b013e318285bc4a
You do not currently have access to this content.