Abstract

A fluid–structure interaction-based biomechanical model of the entire left anterior descending coronary artery is developed from in vivo imaging via the finite element method in this paper. Included in this investigation is ventricle contraction, three-dimensional motion, all angiographically visible side branches, hyper/viscoelastic artery layers, non-Newtonian and pulsatile blood flow, and the out-of-phase nature of blood velocity and pressure. The fluid–structure interaction model is based on in vivo angiography of an elite athlete's entire left anterior descending coronary artery where the influence of including all alternating side branches and the dynamical contraction of the ventricle is investigated for the first time. Results show the omission of side branches result in a 350% increase in peak wall shear stress and a 54% decrease in von Mises stress. Peak von Mises stress is underestimated by up to 80% when excluding ventricle contraction and further alterations in oscillatory shear indices are seen, which provide an indication of flow reversal and has been linked to atherosclerosis localization. Animations of key results are also provided within a video abstract. We anticipate that this model and results can be used as a basis for our understanding of the interaction between coronary and myocardium biomechanics. It is hoped that further investigations could include the passive and active components of the myocardium to further replicate in vivo mechanics and lead to an understanding of the influence of cardiac abnormalities, such as arrythmia, on coronary biomechanical responses.

References

1.
World Health Organisation
,
2018
, “
The Top 10 Causes of Death
,” World Health Organisation, Geneva, Switzerland, accessed July 7, 2020, https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
2.
American Heart Association
,
2017
,
Cardiovascular Disease: A Costly Burden for America Projections Through 2035
,
American Heart Association
, Washington, DC.
3.
Gheorghe
,
A.
,
Griffiths
,
U.
,
Murphy
,
A.
,
Legido-Quigley
,
H.
,
Lamptey
,
P.
, and
Perel
,
P.
,
2018
, “
The Economic Burden of Cardiovascular Disease and Hypertension in Low-and Middle-Income Countries: A Systematic Review
,”
BMC Public Health
,
18
(
1
), p.
975
.10.1186/s12889-018-5806-x
4.
Carpenter
,
H. J.
,
Gholipour
,
A.
,
Ghayesh
,
M. H.
,
Zander
,
A. C.
, and
Psaltis
,
P. J.
,
2020
, “
A Review on the Biomechanics of Coronary Arteries
,”
Int. J. Eng. Sci.
,
147
, p.
103201
.10.1016/j.ijengsci.2019.103201
5.
Cyron
,
C.
, and
Humphrey
,
J.
,
2014
, “
Vascular Homeostasis and the Concept of Mechanobiological Stability
,”
Int. J. Eng. Sci.
,
85
, pp.
203
223
.10.1016/j.ijengsci.2014.08.003
6.
Jennette
,
J. C.
, and
Stone
,
J. R.
,
2014
, “
Chapter 11 - Diseases of Medium-Sized and Small Vessels
,”
Cellular and Molecular Pathobiology of Cardiovascular Disease
,
Academic Press
, San Diego,
CA
, pp.
197
219
.
7.
Fountoulakis
,
P.
,
Oikonomou
,
E.
,
Lazaros
,
G.
, and
Tousoulis
,
D.
,
2018
,
Chapter 1.2—Endothelial Function, Coronary Artery Disease
,
Academic Press
, London, UK, pp.
13
30
.
8.
Akyildiz
,
A. C.
,
Speelman
,
L.
, and
Gijsen
,
F. J. H.
,
2014
, “
Mechanical Properties of Human Atherosclerotic Intima Tissue
,”
J. Biomech.
,
47
(
4
), pp.
773
783
.10.1016/j.jbiomech.2014.01.019
9.
Farcas
,
M. A.
,
Rouleau
,
L.
,
Fraser
,
R.
, and
Leask
,
R. L.
,
2009
, “
The Development of 3-D, In vitro, Endothelial Culture Models for the Study of Coronary Artery Disease
,”
Biomed. Eng. Online
,
8
(
1
), p.
30
.10.1186/1475-925X-8-30
10.
Shishikura
,
D.
,
Sidharta
,
S. L.
,
Honda
,
S.
,
Takata
,
K.
,
Kim
,
S. W.
,
Andrews
,
J.
,
Montarello
,
N.
,
Delacroix
,
S.
,
Baillie
,
T.
,
Worthley
,
M. I.
,
Psaltis
,
P. J.
, and
Nicholls
,
S. J.
,
2018
, “
The Relationship Between Segmental Wall Shear Stress and Lipid Core Plaque Derived From Near-Infrared Spectroscopy
,”
Atherosclerosis
,
275
, pp.
68
73
.10.1016/j.atherosclerosis.2018.04.022
11.
Tsioufis
,
C.
,
Mantzouranis
,
E.
,
Kalos
,
T.
,
Konstantinidis
,
D.
, and
Tousoulis
,
D.
,
2018
,
Chapter 1.4—Risk Factors of Atherosclerosis: Pathophysiological Mechanisms
,
Coronary Artery Disease, Academic Press
, London, UK, pp.
43
66
.
12.
Dal
,
H.
,
Göktepe
,
S.
,
Kaliske
,
M.
, and
Kuhl
,
E.
,
2013
, “
A Fully Implicit Finite Element Method for Bidomain Models of Cardiac Electromechanics
,”
Comput. Methods Appl. Mech. Eng.
,
253
, pp.
323
336
.10.1016/j.cma.2012.07.004
13.
Ohayon
,
J.
,
Yazdani
,
S. K.
,
Malvè
,
M.
,
Gharib
,
A. M.
,
Garcia
,
A.
,
Finet
,
G.
, and
Pettigrew
,
R. I.
,
2017
, “
Chapter 9—Arterial Wall Stiffness and Atherogenesis in Human Coronaries
,”
Biomechanics of Living Organs
,
Academic Press
,
Oxford
, pp.
193
213
.
14.
Kumar
,
V.
,
Abbas
,
A. K.
,
Fausto
,
N.
, and
Aster
,
J. C.
,
2014
,
Robbins and Cotran Pathologic Basis of Disease
, professional ed. e-book,
Elsevier Health Sciences
, Philadelphia, PA.
15.
Zhao
,
Y.
,
Ping
,
J.
,
Yu
,
X.
,
Wu
,
R.
,
Sun
,
C.
, and
Zhang
,
M.
,
2019
, “
Fractional Flow Reserve-Based 4D Hemodynamic Simulation of Time-Resolved Blood Flow in Left Anterior Descending Coronary Artery
,”
Clinical Biomech.
,
70
, pp.
164
169
.10.1016/j.clinbiomech.2019.09.003
16.
Paidoussis
,
M. P.
,
1998
,
Fluid-Structure Interactions: Slender Structures and Axial Flow
,
Academic Press
, San Diego, CA.
17.
Moreno
,
C.
, and
Bhaganagar
,
K.
,
2013
, “
Modeling of Stenotic Coronary Artery and Implications of Plaque Morphology on Blood Flow
,”
Modell. Simul. Eng.
,
2013
, pp.
1
14
.10.1155/2013/390213
18.
Soulis
,
J. V.
,
Giannoglou
,
G. D.
,
Parcharidis
,
G. E.
, and
Louridas
,
G. E.
,
2007
, “
Flow Parameters in Normal Left Coronary Artery Tree. Implication to Atherogenesis
,”
Comput. Biol. Med.
,
37
(
5
), pp.
628
636
.10.1016/j.compbiomed.2006.06.006
19.
Timmins
,
L. H.
,
Molony
,
D. S.
,
Eshtehardi
,
P.
,
McDaniel
,
M. C.
,
Oshinski
,
J. N.
,
Samady
,
H.
, and
Giddens
,
D. P.
,
2015
, “
Focal Association Between Wall Shear Stress and Clinical Coronary Artery Disease Progression
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
94
106
.10.1007/s10439-014-1155-9
20.
Chaichana
,
T.
,
Sun
,
Z.
, and
Jewkes
,
J.
,
2011
, “
Computation of Hemodynamics in the Left Coronary Artery With Variable Angulations
,”
J. Biomech.
,
44
(
10
), pp.
1869
1878
.10.1016/j.jbiomech.2011.04.033
21.
Shanmugavelayudam
,
S. K.
,
Rubenstein
,
D. A.
, and
Yin
,
W.
,
2010
, “
Effect of Geometrical Assumptions on Numerical Modeling of Coronary Blood Flow Under Normal and Disease Conditions
,”
ASME J. Biomech. Eng.
,
132
(
6
), p.
061004
.10.1115/1.4001033
22.
Soulis
,
J. V.
,
Fytanidis
,
D. K.
,
Papaioannou
,
V. C.
, and
Giannoglou
,
G. D.
,
2010
, “
Wall Shear Stress on LDL Accumulation in Human RCAs
,”
Med. Eng. Phys.
,
32
(
8
), pp.
867
877
.10.1016/j.medengphy.2010.05.011
23.
Antoniadis
,
A. P.
,
Mortier
,
P.
,
Kassab
,
G.
,
Dubini
,
G.
,
Foin
,
N.
,
Murasato
,
Y.
,
Giannopoulos
,
A. A.
,
Tu
,
S.
,
Iwasaki
,
K.
,
Hikichi
,
Y.
,
Migliavacca
,
F.
,
Chiastra
,
C.
,
Wentzel
,
J. J.
,
Gijsen
,
F.
,
Reiber
,
J. H. C.
,
Barlis
,
P.
,
Serruys
,
P. W.
,
Bhatt
,
D. L.
,
Stankovic
,
G.
,
Edelman
,
E. R.
,
Giannoglou
,
G. D.
,
Louvard
,
Y.
, and
Chatzizisis
,
Y. S.
,
2015
, “
Biomechanical Modeling to Improve Coronary Artery Bifurcation Stenting: Expert Review Document on Techniques and Clinical Implementation
,”
JACC: Cardiovasc. Interven.
,
8
(
10
), pp.
1281
1296
.10.1016/j.jcin.2015.06.015
24.
Katritsis
,
D.
,
Kaiktsis
,
L.
,
Chaniotis
,
A.
,
Pantos
,
J.
,
Efstathopoulos
,
E. P.
, and
Marmarelis
,
V.
,
2007
, “
Wall Shear Stress: Theoretical Considerations and Methods of Measurement
,”
Prog. Cardiovasc. Diseases
,
49
(
5
), pp.
307
329
.10.1016/j.pcad.2006.11.001
25.
Chabi
,
F.
,
Champmartin
,
S.
,
Sarraf
,
C.
, and
Noguera
,
R.
,
2015
, “
Critical Evaluation of Three Hemodynamic Models for the Numerical Simulation of Intra-Stent Flows
,”
J. Biomech.
,
48
(
10
), pp.
1769
1776
.10.1016/j.jbiomech.2015.05.011
26.
Akherat
,
S. M. J. M.
, and
Kimiaghalam
,
M.
,
2010
, “
A Numerical Investigation on Pulsatile Blood Flow Through Consecutive Axi-Symmetric Stenosis in Coronary Artery
,”
ASME
Paper No. ESDA2010-24534.10.1115/ESDA2010-24534
27.
Soulis
,
J. V.
,
Farmakis
,
T. M.
,
Giannoglou
,
G. D.
, and
Louridas
,
G. E.
,
2006
, “
Wall Shear Stress in Normal Left Coronary Artery Tree
,”
J. Biomech.
,
39
(
4
), pp.
742
749
.10.1016/j.jbiomech.2004.12.026
28.
Vardhan
,
M.
,
Gounley
,
J.
,
Chen
,
S. J.
,
Kahn
,
A. M.
,
Leopold
,
J. A.
, and
Randles
,
A.
,
2019
, “
The Importance of Side Branches in Modeling 3D Hemodynamics From Angiograms for Patients With Coronary Artery Disease
,”
Sci. Rep.
,
9
(
1
), pp.
1
10
.10.1038/s41598-019-45342-5
29.
Li
,
Y.
,
Gutiérrez-Chico
,
J. L.
,
Holm
,
N. R.
,
Yang
,
W.
,
Hebsgaard
,
L.
,
Christiansen
,
E. H.
,
Mæng
,
M.
,
Lassen
,
J. F.
,
Yan
,
F.
,
Reiber
,
J. H. C.
, and
Tu
,
S.
,
2015
, “
Impact of Side Branch Modeling on Computation of Endothelial Shear Stress in Coronary Artery Disease
,”
J. Am. Coll. Cardiol.
,
66
(
2
), pp.
125
135
.10.1016/j.jacc.2015.05.008
30.
Melchionna
,
S.
,
Amati
,
G.
,
Bernaschi
,
M.
,
Bisson
,
M.
,
Succi
,
S.
,
Mitsouras
,
D.
, and
Rybicki
,
F. J.
,
2013
, “
Risk Assessment of Atherosclerotic Plaques Based on Global Biomechanics
,”
Med. Eng. Phys.
,
35
(
9
), pp.
1290
1297
.10.1016/j.medengphy.2013.02.002
31.
Zeng
,
D.
,
Ding
,
Z.
,
Friedman
,
M. H.
, and
Ethier
,
C. R.
,
2003
, “
Effects of Cardiac Motion on Right Coronary Artery Hemodynamics
,”
Ann. Biomed. Eng.
,
31
(
4
), pp.
420
429
.10.1114/1.1560631
32.
Bark
,
D. L.
, and
Ku
,
D. N.
,
2010
, “
Wall Shear Over High Degree Stenoses Pertinent to Atherothrombosis
,”
J. Biomech.
,
43
(
15
), pp.
2970
2977
.10.1016/j.jbiomech.2010.07.011
33.
Frattolin
,
J.
,
Zarandi
,
M. M.
,
Pagiatakis
,
C.
,
Bertrand
,
O. F.
, and
Mongrain
,
R.
,
2015
, “
Numerical Study of Stenotic Side Branch Hemodynamics in True Bifurcation Lesions
,”
Comput. Biol. Med.
,
57
, pp.
130
138
.10.1016/j.compbiomed.2014.11.014
34.
Huo
,
Y.
,
Finet
,
G.
,
Lefevre
,
T.
,
Louvard
,
Y.
,
Moussa
,
I.
, and
Kassab
,
G. S.
,
2012
, “
Which Diameter and Angle Rule Provides Optimal Flow Patterns in a Coronary Bifurcation?
,”
J. Biomech.
,
45
(
7
), pp.
1273
1279
.10.1016/j.jbiomech.2012.01.033
35.
Johnston
,
B. M.
,
Johnston
,
P. R.
,
Corney
,
S.
, and
Kilpatrick
,
D.
,
2004
, “
Non-Newtonian Blood Flow in Human Right Coronary Arteries: Steady State Simulations
,”
J. Biomech.
,
37
(
5
), pp.
709
720
.10.1016/j.jbiomech.2003.09.016
36.
Johnston
,
B. M.
,
Johnston
,
P. R.
,
Corney
,
S.
, and
Kilpatrick
,
D.
,
2006
, “
Non-Newtonian Blood Flow in Human Right Coronary Arteries: Transient Simulations
,”
J. Biomech.
,
39
(
6
), pp.
1116
1128
.10.1016/j.jbiomech.2005.01.034
37.
Akyildiz
,
A. C.
,
Speelman
,
L.
,
van Brummelen
,
H.
,
Gutiérrez
,
M. A.
,
Virmani
,
R.
,
van der Lugt
,
A.
,
van der Steen
,
A. F. W.
,
Wentzel
,
J. J.
, and
Gijsen
,
F. J. H.
,
2011
, “
Effects of Intima Stiffness and Plaque Morphology on Peak Cap Stress
,”
Biomed. Eng. Online
,
10
(
1
), p.
25
.10.1186/1475-925X-10-25
38.
Lee
,
W.
,
Choi
,
G. J.
, and
Cho
,
S. W.
,
2017
, “
Numerical Study to Indicate the Vulnerability of Plaques Using an Idealized 2D Plaque Model Based on Plaque Classification in the Human Coronary Artery
,”
Med. Biol. Eng. Comput.
,
55
(
8
), pp.
1379
1387
.10.1007/s11517-016-1602-x
39.
Cilla
,
M.
,
Peña
,
E.
,
Martínez
,
M.
, and
Kelly
,
D.
,
2013
, “
Comparison of the Vulnerability Risk for Positive Versus Negative Atheroma Plaque Morphology
,”
J. Biomech.
,
46
(
7
), pp.
1248
1254
.10.1016/j.jbiomech.2013.02.012
40.
Ohayon
,
J.
,
Finet
,
G.
,
Treyve
,
F.
,
Rioufol
,
G.
, and
Dubreuil
,
O.
,
2005
, “
A Three-Dimensional Finite Element Analysis of Stress Distribution in a Coronary Atherosclerotic Plaque: In-Vivo Prediction of Plaque Rupture Location
,”
Biomech. Appl. Comput. Assist. Surg.
,
37
(
2
), pp.
225
241
.https://www.researchgate.net/publication/228345149_A_three-dimensional_finite_element_analysis_of_stress_distribution_in_a_coronary_atherosclerotic_plaque_In-vivo_prediction_of_plaque_rupture_location
41.
Maher
,
E.
,
Creane
,
A.
,
Lally
,
C.
, and
Kelly
,
D. J.
,
2012
, “
An Anisotropic Inelastic Constitutive Model to Describe Stress Softening and Permanent Deformation in Arterial Tissue
,”
J. Mech. Behav. Biomed. Mater.
,
12
, pp.
9
19
.10.1016/j.jmbbm.2012.03.001
42.
Baldewsing
,
R. A.
,
Danilouchkine
,
M. G.
,
Mastik
,
F.
,
Schaar
,
J. A.
,
Serruys
,
P. W.
, and
van der Steen
,
A. F.
,
2008
, “
An Inverse Method for Imaging the Local Elasticity of Atherosclerotic Coronary Plaques
,”
IEEE Trans. Inf. Technol. Biomed.
,
12
(
3
), pp.
277
289
.10.1109/TITB.2007.907980
43.
Holzapfel
,
G. A.
,
2001
, “
Biomechanics of Soft Tissue
,”
Handbook Mater. Behav. Models
,
3
, pp.
1049
1063
.10.1016/b978-012443341-0/50107-1
44.
Holzapfel
,
G. A.
, and
Gasser
,
T. C.
,
2007
, “
Computational Stress-Deformation Analysis of Arterial Walls Including High-Pressure Response
,”
Int. J. Cardiol.
,
116
(
1
), pp.
78
85
.10.1016/j.ijcard.2006.03.033
45.
Holzapfel
,
G. A.
, and
Gasser
,
T. C.
,
2001
, “
A Viscoelastic Model for Fiber-Reinforced Composites at Finite Strains: Continuum Basis, Computational Aspects and Applications
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
34
), pp.
4379
4403
.10.1016/S0045-7825(00)00323-6
46.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
,
2014
,
Biomechanics of Soft Tissue in Cardiovascular Systems
,
Springer
, Vienna, Austria.
47.
Holzapfel
,
G. A.
,
Sommer
,
G.
,
Gasser
,
C. T.
, and
Regitnig
,
P.
,
2005
, “
Determination of Layer-Specific Mechanical Properties of Human Coronary Arteries With Nonatherosclerotic Intimal Thickening and Related Constitutive Modeling
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
289
(
5
), pp.
H2048
H2058
.10.1152/ajpheart.00934.2004
48.
Karimi
,
A.
,
Navidbakhsh
,
M.
,
Shojaei
,
A.
, and
Faghihi
,
S.
,
2013
, “
Measurement of the Uniaxial Mechanical Properties of Healthy and Atherosclerotic Human Coronary Arteries
,”
Mater. Sci. Eng.: C
,
33
(
5
), pp.
2550
2554
.10.1016/j.msec.2013.02.016
49.
Karimi
,
A.
,
Sera
,
T.
,
Kudo
,
S.
, and
Navidbakhsh
,
M.
,
2016
, “
Experimental Verification of the Healthy and Atherosclerotic Coronary Arteries Incompressibility Via Digital Image Correlation
,”
Artery Res.
,
16
(
C
), pp.
1
7
.10.1016/j.artres.2016.08.002
50.
Karimi
,
A.
,
Shojaei
,
A.
, and
Razaghi
,
R.
,
2017
, “
Viscoelastic Mechanical Measurement of the Healthy and Atherosclerotic Human Coronary Arteries Using DIC Technique
,”
Artery Res.
,
18
(
C
), pp.
14
21
.10.1016/j.artres.2017.02.004
51.
Hirschhorn
,
M.
,
Tchantchaleishvili
,
V.
,
Stevens
,
R.
,
Rossano
,
J.
, and
Throckmorton
,
A.
,
2020
, “
Fluid–Structure Interaction Modeling in Cardiovascular Medicine – a Systematic Review 2017–2019
,”
Med. Eng. Phys.
,
78
, pp.
1
13
.10.1016/j.medengphy.2020.01.008
52.
Dong
,
J.
,
Sun
,
Z.
,
Inthavong
,
K.
, and
Tu
,
J.
,
2015
, “
Fluid–Structure Interaction Analysis of the Left Coronary Artery With Variable Angulation
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
14
), pp.
1500
1508
.10.1080/10255842.2014.921682
53.
Tang
,
D.
,
Yang
,
C.
,
Kobayashi
,
S.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Teng
,
Z.
,
Billiar
,
K.
,
Bach
,
R.
, and
Ku
,
D. N.
,
2009
, “
3D MRI-Based Anisotropic FSI Models With Cyclic Bending for Human Coronary Atherosclerotic Plaque Mechanical Analysis
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061010
.10.1115/1.3127253
54.
Liu
,
X.
,
Wu
,
G.
,
Xu
,
C.
,
He
,
Y.
,
Shu
,
L.
,
Liu
,
Y.
,
Zhang
,
N.
, and
Lin
,
C.
,
2017
, “
Prediction of Coronary Plaque Progression Using Biomechanical Factors and Vascular Characteristics Based on Computed Tomography Angiography
,”
Comput. Assisted Surg.
,
22
(
sup1
), pp.
286
294
.10.1080/24699322.2017.1389407
55.
Wang
,
L.
,
Wu
,
Z.
,
Yang
,
C.
,
Zheng
,
J.
,
Bach
,
R.
,
Muccigrosso
,
D.
,
Billiar
,
K.
,
Maehara
,
A.
,
Mintz
,
G. S.
, and
Tang
,
D.
,
2015
, “
IVUS-Based FSI Models for Human Coronary Plaque Progression Study: Components, Correlation and Predictive Analysis
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
107
121
.10.1007/s10439-014-1118-1
56.
Yang
,
C.
,
Bach
,
R. G.
,
Zheng
,
J.
,
Naqa
,
I. E.
,
Woodard
,
P. K.
,
Teng
,
Z.
,
Billiar
,
K.
, and
Tang
,
D.
,
2009
, “
In vivo IVUS-Based 3-D Fluid–Structure Interaction Models With Cyclic Bending and Anisotropic Vessel Properties for Human Atherosclerotic Coronary Plaque Mechanical Analysis
,”
IEEE Trans. Biomed. Eng.
,
56
(
10
), pp.
2420
2428
.10.1109/TBME.2009.2025658
57.
Fan
,
R.
,
Tang
,
D.
,
Yang
,
C.
,
Zheng
,
J.
,
Bach
,
R.
,
Wang
,
L.
,
Muccigrosso
,
D.
,
Billiar
,
K.
,
Zhu
,
J.
,
Ma
,
G.
,
Maehara
,
A.
, and
Mintz
,
G. S.
,
2014
, “
Human Coronary Plaque Wall Thickness Correlated Positively With Flow Shear Stress and Negatively With Plaque Wall Stress: An IVUS-Based Fluid-Structure Interaction Multi-Patient Study
,”
Biomed. Eng. Online
,
13
(
1
), p.
32
.10.1186/1475-925X-13-32
58.
Chau
,
A. H.
,
Chan
,
R. C.
,
Shishkov
,
M.
,
MacNeill
,
B.
,
Iftimia
,
N.
,
Tearney
,
G. J.
,
Kamm
,
R. D.
,
Bouma
,
B. E.
, and
Kaazempur-Mofrad
,
M. R.
,
2004
, “
Mechanical Analysis of Atherosclerotic Plaques Based on Optical Coherence Tomography
,”
Ann. Biomed. Eng.
,
32
(
11
), pp.
1494
1503
.10.1114/B:ABME.0000049034.75368.4a
59.
Gholipour
,
A.
,
Ghayesh
,
M. H.
,
Zander
,
A. C.
, and
Psaltis
,
P. J.
,
2020
, “
In vivo Based Biomechanics of Right and Left Coronary Arteries
,”
Int. J. Eng. Sci.
,
154
, p.
103281
.10.1016/j.ijengsci.2020.103281
60.
Meza
,
D.
,
Rubenstein
,
D. A.
, and
Yin
,
W.
,
2018
, “
A Fluid–Structure Interaction Model of the Left Coronary Artery
,”
ASME J. Biomech. Eng.
,
140
(
12
), p. 121006. 10.1115/1.4040776
61.
Gholipour
,
A.
,
Ghayesh
,
M. H.
,
Zander
,
A.
, and
Mahajan
,
R.
,
2018
, “
Three-Dimensional Biomechanics of Coronary Arteries
,”
Int. J. Eng. Sci.
,
130
, pp.
93
114
.10.1016/j.ijengsci.2018.03.002
62.
Gholipour
,
A.
,
Ghayesh
,
M. H.
, and
Zander
,
A.
,
2018
, “
Nonlinear Biomechanics of Bifurcated Atherosclerotic Coronary Arteries
,”
Int. J. Eng. Sci.
,
133
, pp.
60
83
.10.1016/j.ijengsci.2018.08.003
63.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Stadler
,
M.
,
2002
, “
A Structural Model for the Viscoelastic Behavior of Arterial Walls: Continuum Formulation and Finite Element Analysis
,”
Eur. J. Mech. A/Solids
,
21
(
3
), pp.
441
463
.10.1016/S0997-7538(01)01206-2
64.
Aengevaeren
,
V. L.
,
Mosterd
,
A.
,
Braber
,
T. L.
,
Prakken
,
N. H.
,
Doevendans
,
P. A.
,
Grobbee
,
D. E.
,
Thompson
,
P. D.
,
Eijsvogels
,
T. M.
, and
Velthuis
,
B. K.
,
2017
, “
Relationship Between Lifelong Exercise Volume and Coronary Atherosclerosis in Athletes
,”
Circulation
,
136
(
2
), pp.
138
148
.10.1161/CIRCULATIONAHA.117.027834
65.
Prior
,
D. L.
, and
La Gerche
,
A.
,
2012
, “
The Athlete's Heart
,”
Heart
,
98
(
12
), pp.
947
955
.10.1136/heartjnl-2011-301329
66.
Galderisi
,
M.
,
Cardim
,
N.
,
D'Andrea
,
A.
,
Bruder
,
O.
,
Cosyns
,
B.
,
Davin
,
L.
,
Donal
,
E.
,
Edvardsen
,
T.
,
Freitas
,
A.
,
Habib
,
G.
,
Kitsiou
,
A.
,
Plein
,
S.
,
Petersen
,
S. E.
,
Popescu
,
B. A.
,
Schroeder
,
S.
,
Burgstahler
,
C.
,
Lancellotti
,
P.
,
Reviewers
,
D.
,
Sicari
,
R.
,
Muraru
,
D.
,
Lombardi
,
M.
,
Dulgheru
,
R.
, and
Gerche
,
A. L.
,
Document Reviewers,
2015
, “
The Multi-Modality Cardiac Imaging Approach to the Athlete's Heart: An Expert Consensus of the European Association of Cardiovascular Imaging
,”
Eur. Heart J. Cardiovasc. Imaging
,
16
(
4
), p.
353
.10.1093/ehjci/jeu323
67.
Trujillo-Pino
,
A.
,
Krissian
,
K.
,
Alemán-Flores
,
M.
, and
Santana-Cedrés
,
D.
,
2013
, “
Accurate Subpixel Edge Location Based on Partial Area Effect
,”
Image Vision Comput.
,
31
(
1
), pp.
72
90
.10.1016/j.imavis.2012.10.005
68.
Kumar
,
N.
, and
Rao
,
V. V.
,
2016
, “
Hyperelastic Mooney-Rivlin Model: Determination and Physical Interpretation of Material Constants
,”
Parameters
,
2
(
10
), p.
1
.http://www.mitpublications.org/yellow_images/75618-me-book.43-46.pdf
69.
Gholipour
,
A.
,
Ghayesh
,
M. H.
, and
Zhang
,
Y.
,
2020
, “
A Comparison Between Elastic and Viscoelastic Asymmetric Dynamics of Elastically Supported AFG Beams
,”
Vibration
,
3
(
1
), pp.
3
17
.10.3390/vibration3010002
70.
Holzapfel
,
G. A.
,
2003
, “
Structural and Numerical Models for the (Visco)Elastic Response of Arterial Walls With Residual Stresses
,”
Biomechanics of Soft Tissue in Cardiovascular Systems
,
G. A.
Holzapfel
, and
R. W.
Ogden
, eds.,
Springer
,
Vienna
, pp.
109
184
.
71.
ANSYS
,
2019
,
ANSYS® (Version 19.0, Cannonsburg, PA, US), ANSYS® Academic Research Mechanical, Release 19.0
,
ANSYS, ANSYS Product Help, Documentation, Material Reference, Nonlinear Material Properties, Viscoelasticity
, Cannonsburg, PA.
72.
Haupt
,
P.
, and
Lion
,
A.
,
2002
, “
On Finite Linear Viscoelasticity of Incompressible Isotropic Materials
,”
Acta Mech.
,
159
(
1–4
), pp.
87
124
.10.1007/BF01171450
73.
Chen
,
H.
,
Luo
,
T.
,
Zhao
,
X.
,
Lu
,
X.
,
Huo
,
Y.
, and
Kassab
,
G. S.
,
2013
, “
Microstructural Constitutive Model of Active Coronary Media
,”
Biomaterials
,
34
(
31
), pp.
7575
7583
.10.1016/j.biomaterials.2013.06.035
74.
Chen
,
H.
, and
Kassab
,
G.
,
2017
, “
Microstructure-Based Constitutive Model of Coronary Artery With Active Smooth Muscle Contraction
,”
Sci. Rep.
,
7
(
1
), p.
9339
.10.1038/s41598-017-08748-7
75.
Rohkohl
,
C.
,
Lauritsch
,
G.
,
Biller
,
L.
,
Prümmer
,
M.
,
Boese
,
J.
, and
Hornegger
,
J.
,
2010
, “
Interventional 4D Motion Estimation and Reconstruction of Cardiac Vasculature Without Motion Periodicity Assumption
,”
Med. Image Anal.
,
14
(
5
), pp.
687
694
.10.1016/j.media.2010.05.003
76.
Sauvée
,
M.
,
Noce
,
A.
,
Poignet
,
P.
,
Triboulet
,
J.
, and
Dombre
,
E.
,
2007
, “
Three-Dimensional Heart Motion Estimation Using Endoscopic Monocular Vision System: From Artificial Landmarks to Texture Analysis
,”
Biomed. Signal Process. Control
,
2
(
3
), pp.
199
207
.10.1016/j.bspc.2007.07.006
77.
Myers
,
J.
,
Moore
,
J.
,
Ojha
,
M.
,
Johnston
,
K.
, and
Ethier
,
C.
,
2001
, “
Factors Influencing Blood Flow Patterns in the Human Right Coronary Artery
,”
Ann. Biomed. Eng.
,
29
(
2
), pp.
109
120
.10.1114/1.1349703
78.
Rizzini
,
M. L.
,
Gallo
,
D.
,
De Nisco
,
G.
,
D'Ascenzo
,
F.
,
Chiastra
,
C.
,
Bocchino
,
P. P.
,
Piroli
,
F.
,
De Ferrari
,
G. M.
, and
Morbiducci
,
U.
,
2020
, “
Does the Inflow Velocity Profile Influence Physiologically Relevant Flow Patterns in Computational Hemodynamic Models of Left Anterior Descending Coronary Artery?
,”
Med. Eng. Phys.
,
82
, pp.
58
69
.10.1016/j.medengphy.2020.07.001
79.
Jung
,
J.
,
Lyczkowski
,
R. W.
,
Panchal
,
C. B.
, and
Hassanein
,
A.
,
2006
, “
Multiphase Hemodynamic Simulation of Pulsatile Flow in a Coronary Artery
,”
J. Biomech.
,
39
(
11
), pp.
2064
2073
.10.1016/j.jbiomech.2005.06.023
80.
Poon, E. K. W., Thondapu, V., Hayat, U., Barlis, P., Yap, C. Y., Kuo, P. H., Wang, Q., Ma, J., Zhu, S. J., Moore, S., and Ooi, A. S. H., 2018, “Elevated Blood Viscosity and Microrecirculation Resulting From Coronary Stent Malapposition,”
ASME J. Biomech. Eng.
, 140(5), p. 051006.10.1115/1.4039306
81.
Mandal
,
M. S.
,
Mukhopadhyay
,
S.
, and
Layek
,
G. C.
,
2012
, “
Pulsatile Flow of an Incompressible, Inhomogeneous Fluid in a Smoothly Expanded Vascular Tube
,”
Int. J. Eng. Sci.
,
57
, pp.
1
10
.10.1016/j.ijengsci.2012.04.002
82.
Tran
,
J. S.
,
Schiavazzi
,
D. E.
,
Ramachandra
,
A. B.
,
Kahn
,
A. M.
, and
Marsden
,
A. L.
,
2017
, “
Automated Tuning for Parameter Identification and Uncertainty Quantification in Multi-Scale Coronary Simulations
,”
Comput. Fluids
,
142
, pp.
128
138
.10.1016/j.compfluid.2016.05.015
83.
Opie
,
L. H.
,
2004
, “Heart Physiology: From Cell to Circulation,”
Lippincott Williams & Wilkins
, Philadelphia, PA.
84.
Paul
,
M. C.
,
Mamun Molla
,
M.
, and
Roditi
,
G.
,
2009
, “
Large–Eddy Simulation of Pulsatile Blood Flow
,”
Med. Eng. Phys.
,
31
(
1
), pp.
153
159
.10.1016/j.medengphy.2008.04.014
85.
Nicoud
,
F.
,
Chnafa
,
C.
,
Siguenza
,
J.
,
Zmijanovic
,
V.
, and
Mendez
,
S.
,
2018
, “
Large-Eddy Simulation of Turbulence in Cardiovascular Flows
,”
Biomedical Technology: Modeling, Experiments and Simulation
,
P.
Wriggers
, and
T.
Lenarz
, eds.,
Springer International Publishing
,
Cham
, pp.
147
167
.
86.
Werner
,
H.
, and
Wengle
,
H.
,
1993
, “
Large-Eddy Simulation of Turbulent Flow Over and Around a Cube in a Plate Channel
,”
Turbulent Shear Flows
, Vol.
8
,
Springer
, Berlin, Heidelberg, pp.
155
168
.
87.
Mises
,
R. V.
,
1928
, “
Mechanik Der Plastischen Formänderung Von Kristallen
,”
ZAMM‐J. Appl. Math. Mech./Z. Für Angew. Mathematik Und Mechanik
,
8
(
3
), pp.
161
185
.10.1002/zamm.19280080302
88.
Sughimoto
,
K.
,
Shimamura
,
Y.
,
Tezuka
,
C.
,
Tsubota
,
K. I.
,
Liu
,
H.
,
Okumura
,
K.
,
Masuda
,
Y.
, and
Haneishi
,
H.
,
2016
, “
Effects of Arterial Blood Flow on Walls of the Abdominal Aorta: Distributions of Wall Shear Stress and Oscillatory Shear Index Determined by Phase-Contrast Magnetic Resonance Imaging
,”
Heart Vessels
,
31
(
7
), pp.
1168
1175
.10.1007/s00380-015-0758-x
89.
Taelman
,
L.
,
Degroote
,
J.
,
Swillens
,
A.
,
Vierendeels
,
J.
, and
Segers
,
P.
,
2014
, “
Fluid–Structure Interaction Simulation of Pulse Propagation in Arteries: Numerical Pitfalls and Hemodynamic Impact of a Local Stiffening
,”
Int. J. Eng. Sci.
,
77
, pp.
1
13
.10.1016/j.ijengsci.2013.12.002
90.
Torii
,
R.
,
Wood
,
N. B.
,
Hadjiloizou
,
N.
,
Dowsey
,
A. W.
,
Wright
,
A. R.
,
Hughes
,
A. D.
,
Davies
,
J.
,
Francis
,
D. P.
,
Mayet
,
J.
,
Yang
,
G.-Z.
,
Thom
,
S. A. M.
, and
Xu
,
X. Y.
,
2009
, “
Fluid–Structure Interaction Analysis of a Patient-Specific Right Coronary Artery With Physiological Velocity and Pressure Waveforms
,”
Commun. Numer. Methods Eng.
,
25
(
5
), pp.
565
580
.10.1002/cnm.1231
91.
Chiastra
,
C.
,
Migliavacca
,
F.
,
Martínez
,
M. Á.
, and
Malvè
,
M.
,
2014
, “
On the Necessity of Modelling Fluid–Structure Interaction for Stented Coronary Arteries
,”
J. Mech. Behav. Biomed. Mater.
,
34
, pp.
217
230
.10.1016/j.jmbbm.2014.02.009
92.
Franke
,
K. B.
,
Wong
,
D. T.
,
Baumann
,
A.
,
Nicholls
,
S. J.
,
Gulati
,
R.
, and
Psaltis
,
P. J.
, and
Therapy
,
2019
, “
Current State-of-Play in Spontaneous Coronary Artery Dissection
,”
Cardiovasc. Diagnosis Ther.
,
9
(
3
), pp.
281
298
.10.21037/cdt.2019.04.03
93.
Yuvaraj
,
J.
,
Lin
,
A.
,
Nerlekar
,
N.
,
Rashid
,
H.
,
Cameron
,
J. D.
,
Seneviratne
,
S.
,
Nicholls
,
S.
,
Psaltis
,
P. J.
, and
Wong
,
D. T.
,
2020
, “
Is Spontaneous Coronary Artery Dissection (SCAD) Related to Vascular Inflammation and Epicardial Fat?—Insights From Computed Tomography Coronary Angiography
,”
Cardiovasc. Diagnosis Ther.
,
10
(
2
), pp.
239
241
.10.21037/cdt.2020.01.09
94.
Wang
,
P. J.
,
Nezami
,
F. R.
,
Gorji
,
M. B.
,
Berti
,
F.
,
Petrini
,
L.
,
Wierzbicki
,
T.
,
Migliavacca
,
F.
, and
Edelman
,
E. R.
,
2018
, “
Effect of Working Environment and Procedural Strategies on Mechanical Performance of Bioresorbable Vascular Scaffolds
,”
Acta Biomaterialia
,
82
, pp.
34
43
.10.1016/j.actbio.2018.10.020
95.
Mridha
,
N.
,
Subhaharan
,
D.
,
Niranjan
,
S.
,
Rashid
,
M. K.
,
Psaltis
,
P.
, and
Singh
,
K.
,
2019
, “
A Meta-Analysis of Randomized Controlled Trials to Compare Long-Term Clinical Outcomes of Bioabsorbable Polymer and Durable Polymer Drug-Eluting Stents
,”
Eur. Heart J. Qual. Care Clin. Outcomes
,
5
(
2
), pp.
105
113
.10.1093/ehjqcco/qcy036
96.
Berg
,
P.
,
Iosif
,
C.
,
Ponsonnard
,
S.
,
Yardin
,
C.
,
Janiga
,
G.
, and
Mounayer
,
C.
,
2016
, “
Endothelialization of Over- and Undersized Flow-Diverter Stents at Covered Vessel Side Branches: An In Vivo and in Silico Study
,”
J. Biomech.
,
49
(
1
), pp.
4
12
.10.1016/j.jbiomech.2015.10.047
97.
Cansız
,
B.
,
Dal
,
H.
, and
Kaliske
,
M.
,
2017
, “
Computational Cardiology: A Modified Hill Model to Describe the Electro-Visco-Elasticity of the Myocardium
,”
Comput. Methods Appl. Mech. Eng.
,
315
, pp.
434
466
.10.1016/j.cma.2016.10.009
98.
Alegria
,
J. R.
,
Herrmann
,
J.
,
Holmes
,
D. R.
, Jr.
,
Lerman
,
A.
, and
Rihal
,
C. S.
,
2005
, “
Myocardial Bridging
,”
Eur. Heart J.
,
26
(
12
), pp.
1159
1168
.10.1093/eurheartj/ehi203
99.
Balzani
,
D.
,
Deparis
,
S.
,
Fausten
,
S.
,
Forti
,
D.
,
Heinlein
,
A.
,
Klawonn
,
A.
,
Quarteroni
,
A.
,
Rheinbach
,
O.
, and
Schröder
,
J.
,
2016
, “
Numerical Modeling of Fluid–Structure Interaction in Arteries With Anisotropic Polyconvex Hyperelastic and Anisotropic Viscoelastic Material Models at Finite Strains
,”
Int. J. Numer. Methods Biomed. Eng.
,
32
(
10
), p.
e02756
.10.1002/cnm.2756
100.
Wang
,
L.
,
Tang
,
D.
,
Maehara
,
A.
,
Wu
,
Z.
,
Yang
,
C.
,
Muccigrosso
,
D.
,
Zheng
,
J.
,
Bach
,
R.
,
Billiar
,
K. L.
, and
Mintz
,
G. S.
,
2018
, “
Fluid-Structure Interaction Models Based on Patient-Specific IVUS at Baseline and Follow-Up for Prediction of Coronary Plaque Progression by Morphological and Biomechanical Factors: A Preliminary Study
,”
J. Biomech.
,
68
, pp.
43
50
.10.1016/j.jbiomech.2017.12.007
101.
Jahromi
,
R.
,
Pakravan
,
H. A.
,
Saidi
,
M. S.
, and
Firoozabadi
,
B.
,
2019
, “
Primary Stenosis Progression Versus Secondary Stenosis Formation in the Left Coronary Bifurcation: A Mechanical Point of View
,”
Biocybern. Biomed. Eng.
,
39
(
1
), pp.
188
198
.10.1016/j.bbe.2018.11.006
102.
Siebes
,
M.
,
Verhoeff
,
B.-J.
,
Meuwissen
,
M.
,
de Winter
,
R. J.
,
Spaan
,
J. A.
, and
Piek
,
J. J.
,
2004
, “
Single-Wire Pressure and Flow Velocity Measurement to Quantify Coronary Stenosis Hemodynamics and Effects of Percutaneous Interventions
,”
Circulation
,
109
(
6
), pp.
756
762
.10.1161/01.CIR.0000112571.06979.B2
103.
Waters
,
S. L.
,
Alastruey
,
J.
,
Beard
,
D. A.
,
Bovendeerd
,
P. H.
,
Davies
,
P. F.
,
Jayaraman
,
G.
,
Jensen
,
O. E.
,
Lee
,
J.
,
Parker
,
K. H.
,
Popel
,
A. S.
,
Secomb
,
T. W.
,
Siebes
,
M.
,
Sherwin
,
S. J.
,
Shipley
,
R. J.
,
Smith
,
N. P.
, and
van der Vosse
,
F. N.
,
2011
, “
Theoretical Models for Coronary Vascular Biomechanics: Progress & Challenges
,”
Prog. Biophys. Mol. Biol.
,
104
(
1–3
), pp.
49
76
.10.1016/j.pbiomolbio.2010.10.001
104.
Chilian
,
W. M.
,
Layne
,
S. M.
,
Klausner
,
E. C.
,
Eastham
,
C. L.
, and
Marcus
,
M. L.
,
1989
, “
Redistribution of Coronary Microvascular Resistance Produced by Dipyridamole
,”
Am. J. Physiol. Heart Circ. Physiol.
,
256
(
2
), pp.
H383
H390
.10.1152/ajpheart.1989.256.2.H383
105.
De Nisco
,
G.
,
Kok
,
A. M.
,
Chiastra
,
C.
,
Gallo
,
D.
,
Hoogendoorn
,
A.
,
Migliavacca
,
F.
,
Wentzel
,
J. J.
, and
Morbiducci
,
U.
,
2019
, “
The Atheroprotective Nature of Helical Flow in Coronary Arteries
,”
Ann. Biomed. Eng.
,
47
(
2
), pp.
425
438
.10.1007/s10439-018-02169-x
106.
De Nisco
,
G.
,
Hoogendoorn
,
A.
,
Chiastra
,
C.
,
Gallo
,
D.
,
Kok
,
A. M.
,
Morbiducci
,
U.
, and
Wentzel
,
J. J.
,
2020
, “
The Impact of Helical Flow on Coronary Atherosclerotic Plaque Development
,”
Atheroscler.
,
300
, pp.
39
46
.10.1016/j.atherosclerosis.2020.01.027
You do not currently have access to this content.