Abstract

Fixation failure with resulting non-union is the key complication after femoral neck fixation. It can be avoided by permitting dynamic compression and reducing rotation and posterior tilt of the femoral head. To achieve this, a novel implant that features an interlocking plate with three hook-pins (The Hansson Pinloc® System) was developed from the original two hook-pins. Only an enhanced torsional fixation by the implant modification is reported. The purpose was to compare the biomechanical compressive and bending stability of the original and modified implant in femoral neck fixation. To analyze the contribution of both modified components, three individual pins were included, although not in regular use. Forty-eight synthetic femurs with mid-cervical wedge osteotomies were fixated by two pins or identical triangular pin patterns with or without the plate. Eight specimens of each group were loaded cyclically in compression with an inferior wedge to simulate stance and anteroposterior bending with a posterior wedge to imitate sitting down. The clinically relevant stability measurements were stiffness and deformation. Fissure formation defined failure. The novel implant improved bending stability by 30% increased stiffness, 44% reduced deformation, and less frequent posterior neck fissure formation (p < 0.001) while increased compressive stability was only evident with 25% reduced deformation and less frequent inferior neck fissures (p < 0.001). These impacts were mainly mediated by the third pin, while the plate prevented a lateral fissure in compression (p < 0.001). The clinical stability was improved by dynamic compression and decreased posterior tilt by implant modification.

References

References
1.
Gjertsen
,
J. E.
,
Fevang
,
J. M.
,
Matre
,
K.
,
Vinje
,
T.
, and
Engesæter
,
L. B.
,
2011
, “
Clinical Outcome After Undisplaced Femoral Neck Fractures
,”
Acta Orthop.
,
82
(
3
), pp.
268
274
.10.3109/17453674.2011.588857
2.
Bartels
,
S.
,
Gjertsen
,
J. E.
,
Frihagen
,
F.
,
Rogmark
,
C.
, and
Utvag
,
S. E.
,
2018
, “
High Failure Rate After Internal Fixation and Beneficial Outcome After Arthroplasty in Treatment of Displaced Femoral Neck Fractures in Patients Between 55 and 70 Years
,”
Acta Orthop.
,
89
(
1
), pp.
53
58
.10.1080/17453674.2017.1376514
3.
Ragnarsson
,
J. I.
, and
Kärrholm
,
J.
,
1991
, “
Stability of Femoral Neck Fracture. Roentgen Stereophotogrammetry of 29 Hook-Pinned Fractures
,”
Acta Orthop. Scand.
,
62
(
3
), pp.
201
207
.10.3109/17453679108993593
4.
Ragnarsson
,
J. I.
, and
Kiirrholm
,
J.
,
1992
, “
Factors Influencing Postoperative Movement in Displaced Femoral Neck Fractures: Evaluation by Conventional Radiography and Stereoradiography
,”
J. Orthop. Trauma
,
6
(
2
), pp.
152
158
.10.1097/00005131-199206000-00004
5.
Palm
,
H.
,
Gosvig
,
K.
,
Krasheninnikoff
,
M.
,
Jacobsen
,
S.
, and
Gebuhr
,
P.
,
2009
, “
A New Measurement for Posterior Tilt Predicts Reoperation in Undisplaced Femoral Neck Fractures: 113 Consecutive Patients Treated by Internal Fixation and Followed for 1 Year
,”
Acta Orthop.
,
80
(
3
), pp.
303
307
.10.3109/17453670902967281
6.
Parker
,
M. J.
, and
Gurusamy
,
K.
,
2001
, “
Internal Fixation Implants for Intracapsular Hip Fractures in Adults
,”
Cochrane Database Syst.
, (4), p. CD001467.10.1002/14651858.CD001467
7.
Berkes
,
M. B.
,
Little
,
M. T. M.
,
Lazaro
,
L. E.
,
Cymerman
,
R. M.
,
Helfet
,
D. L.
, and
Lorich
,
D. G.
,
2012
, “
Catastrophic Failure After Open Reduction Internal Fixation of Femoral Neck Fractures With a Novel Locking Plate Implant
,”
J. Orthop. Trauma
,
26
(
10
), pp.
e170
176
.10.1097/BOT.0b013e31823b4cd1
8.
Yin
,
H.
,
Pan
,
Z.
, and
Jiang
,
H.
,
2018
, “
Is Dynamic Locking Plate (Targon FN) a Better Choice for Treating of Intracapsular Hip Fracture? A Meta-Analysis
,”
Int. J. Surg.
,
52
, pp.
30
34
.10.1016/j.ijsu.2018.01.044
9.
Biber
,
R.
,
Brem
,
M.
, and
Bail
,
H. J.
,
2014
, “
Targon Femoral Neck for Femoral-Neck Fracture Fixation: Lessons Learnt From a Series of One Hundred and Thirty-five Consecutive Cases
,”
Int. Orthop.
,
38
(
3
), pp.
595
599
.10.1007/s00264-013-2176-y
10.
Aminian
,
A.
,
Gao
,
F.
,
Fedoriw
,
W. W.
,
Zhang
,
L. Q.
,
Kalainov
,
D. M.
, and
Merk
,
B. R.
,
2007
, “
Vertically Oriented Femoral Neck Fractures: Mechanical Analysis of Four Fixation Techniques
,”
J. Orthop. Trauma
,
21
(
8
), pp.
544
548
.10.1097/BOT.0b013e31814b822e
11.
Chang
,
Y. B.
,
Yin
,
D.
, and
Li
,
P. Y.
,
2004
, “
Design and Biomechanical Structure Evaluation of Self-Locking Screw Plate System for Femoral Neck Fracture
,”
Chin. J. Clin. Rehabil.
,
8
(
35
), pp.
8126
8128
.https://www.researchgate.net/publication/289733025_Design_and_biomechanical_structure_evaluation_of_self-locking_screw_plate_system_for_femoral_neck_fracture
12.
Hunt
,
S.
,
Martin
,
R.
, and
Woolridge
,
B.
,
2012
, “
Fatigue Testing of a New Locking Plate for Hip Fractures
,”
J. Med. Biol. Eng.
,
32
(
2
), pp.
117
122
.10.5405/jmbe.826
13.
Nowotarski
,
P. J.
,
Ervin
,
B.
,
Weatherby
,
B.
,
Pettit
,
J.
,
Goulet
,
R.
, and
Norris
,
B.
,
2012
, “
Biomechanical Analysis of a Novel Femoral Neck Locking Plate for Treatment of Vertical Shear Pauwel's Type C Femoral Neck Fractures
,”
Injury
,
43
(
6
), pp.
802
806
.10.1016/j.injury.2011.09.012
14.
Samsami
,
S.
,
Saberi
,
S.
,
Bagheri
,
N.
, and
Rouhi
,
G.
,
2016
, “
Interfragmentary Motion Assessment for Three Different Fixation Techniques of Femoral Neck Fractures in Young Adults
,”
Biomed. Mater. Eng.
,
27
(
4
), pp.
389
404
.10.3233/BME-161593
15.
Augat
,
P.
,
Bliven
,
E.
, and
Hackl
,
S.
,
2019
, “
Biomechanics of Femoral Neck Fractures and Implications for Fixation
,”
J. Orthop Trauma
,
33
(
Suppl 1
), pp.
S27
S32
.10.1097/BOT.0000000000001365
16.
Brattgjerd
,
J. E.
,
Loferer
,
M.
,
Niratisairak
,
S.
,
Steen
,
H.
, and
Strømsøe
,
K.
,
2018
, “
Increased Torsional Stability by a Novel Femoral Neck Locking Plate. The Role of Plate Design and Pin Configuration in a Synthetic Bone Block Model
,”
Clin. Biomech.
,
55
, pp.
28
35
.10.1016/j.clinbiomech.2018.03.024
17.
Kalland
,
K.
,
Åberg
,
H.
,
Berggren
,
A.
,
Ullman
,
M.
,
Snellman
,
G.
,
Jonsson
,
K. B.
, and
Johansson
,
T.
,
2019
, “
Similar Outcome of Femoral Neck Fractures Treated With Pinloc or Hansson Pins: 1-Year Data From a Multicenter Randomized Clinical Study on 439 Patients
,”
Acta Orthop.
,
90
(
6
), pp.
542
546
.10.1080/17453674.2019.1657261
18.
Pauwels
,
F.
,
1935
,
Der Schenkelhalsbruch: Ein Mechanisches Problem
,
F. Enke
,
Stuttgart, Germany
.
19.
Alho
,
A.
,
Benterud
,
J. G.
,
Rønningen
,
H.
, and
Høiseth
,
A.
,
1992
, “
Prediction of Disturbed Healing in Femoral Neck Fracture,” Radiographic Analysis of 149 Cases
,”
Acta Orthop. Scand.
,
63
(
6
), pp.
639
644
.10.1080/17453679209169726
20.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
,
2001
, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
,
34
(
7
), pp.
859
871
.10.1016/S0021-9290(01)00040-9
21.
Basso
,
T.
,
Klaksvik
,
J.
,
Syversen
,
U.
, and
Foss
,
O. A.
,
2014
, “
A Biomechanical Comparison of Composite Femurs and Cadaver Femurs Used in Experiments on Operated Hip Fractures
,”
J. Biomech.
,
47
(
16
), pp.
3898
3902
.10.1016/j.jbiomech.2014.10.025
22.
Hoshino
,
C. M.
, and
O'Toole
,
R. V.
,
2015
, “
Fixed-Angle Devices Versus Multiple Cancellous Screws: What Does the Evidence Tell us?
,”
Injury
,
46
(
3
), pp.
474
477
.10.1016/j.injury.2014.12.008
23.
Brandt
,
E.
,
Verdonschot
,
N.
,
van Vugt
,
A.
, and
van Kampen
,
A.
,
2006
, ” “
Biomechanical Analysis of the Percutaneous Compression Plate and Sliding Hip Screw in Intracapsular Hip Fractures: Experimental Assessment Using Synthetic and Cadaver Bones
,”
Injury
,
37
(
10
), pp.
979
83
.10.1016/j.injury.2006.05.011
24.
Brandt
,
E.
,
Verdonschot
,
N.
,
van Vugt
,
A.
, and
van Kampen
,
A.
,
2011
, “
Biomechanical Analysis of the Sliding Hip Screw, Cannulated Screws and Targon1 FN in Intracapsular Hip Fractures in Cadaver Femora
,”
Injury
,
42
(
2
), pp.
183
187
.10.1016/j.injury.2010.08.021
25.
Stoffel
,
K.
,
Zderic
,
I.
,
Gras
,
F.
,
Sommer
,
C.
,
Eberli
,
U.
,
Mueller
,
D.
,
Oswald
,
M.
, and
Gueorguiev
,
B.
,
2017
, “
Biomechanical Evaluation of the Femoral Neck System in Unstable Pauwels III Femoral Neck Fractures: A Comparison With the Dynamic Hip Screw and Cannulated Screws
,”
J. Orthop. Trauma
,
31
(
3
), pp.
131
137
.10.1097/BOT.0000000000000739
26.
Basso
,
T.
,
Klaksvik
,
J.
, and
Foss
,
O. A.
,
2014a
, “
Locking Plates and Their Effects on Healing Conditions and Stress Distribution: A Femoral Neck Fracture Study in Cadavers
,”
Clin Biomech.
,
29
(
5
), pp.
595
598
.10.1016/j.clinbiomech.2014.03.006
27.
Basso
,
T.
,
Klaksvik
,
J.
, and
Foss
,
O. A.
,
2014b
, “
The Effect of Interlocking Parallel Screws in Subcapital Femoral-Neck Fracture Fixation: A Cadaver Study
,”
Clin. Biomech.
,
29
(
2
), pp.
213
217
.10.1016/j.clinbiomech.2013.11.008
28.
Yang
,
R. R.
,
Tan
,
J. F.
,
Liu
,
Y.
,
Yang
,
Q.
, and
Zhang
,
H.
,
2016
, “
Biomechanical Research of Hollow Screws and Static Locking Plate With Hollow Lag Screws for Femoral Neck Fracture
,”
BME Clin Med.
,
3
, pp.
225
228
.
29.
Egol
,
K. A.
,
Kubiak
,
E. N.
,
Fulkerson
,
E.
,
Kummer
,
F. J.
, and
Koval
,
K. J.
,
2004
, “
Biomechanics of Locked Plates and Screws
,”
J. Orthop. Trauma
,
18
(
8
), pp.
488
493
.10.1097/00005131-200409000-00003
30.
Maurer
,
S. G.
,
Wright
,
K. E.
,
Kummer
,
F. J.
,
Zuckerman
,
J. D.
, and
Koval
,
K. J.
,
2003
, “
Two or Three Screws for Fixation of Femoral Neck Fractures?
,”
Am. J. Orthop.
,
32
(
9
), pp.
438
442
. https://pubmed.ncbi.nlm.nih.gov/14560825/
31.
Yamamoto
,
T.
,
Kobayashi
,
Y.
, and
Nonomiya
,
H.
,
2019
, “
Undisplaced Femoral Neck Fractures Need a Closed Reduction Before Internal Fixation
,”
Eur. J. Orthop. Surg. Traumatol.
,
29
(
1
), pp.
73
78
.10.1007/s00590-018-2281-0
32.
Official Journal of the European Union
,
2017
, “
Regulation (EU) 2017/745 of the European Parliament and of the Council of 5 April 2017 on Medical Devices
,” Official Journal of the European Union,
L117
.https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R0745
33.
Schemitsch
,
E. H.
,
Bhandari
,
M.
,
Boden
,
S. D.
,
Bourne
,
R. D.
,
Bozic
,
K. J.
,
Jacobs
,
J. J.
, and
Zdero
,
R.
,
2010
, “
The Evidence-Based Approach in Bringing New Orthopaedic Devices to Market
,”
J. Bone Jt. Surg. Am.
,
92
(
4
), pp.
1030
1037
.10.2106/JBJS.H.01532
34.
Goldhahn
,
J.
,
Suhm
,
N.
,
Goldhahn
,
S.
,
Blauth
,
M.
, and
Hanson
,
B.
,
2008
, “
Influence of Osteoporosis on Fracture Fixation—A Systematic Literature Review
,”
Osteoporos Int.
,
19
(
6
), pp.
761
772
.10.1007/s00198-007-0515-9
35.
Spangler
,
L.
,
Cummings
,
P.
,
Tencer
,
A. F.
,
Mueller
,
B. A.
, and
Mock
,
C.
,
2001
, “
Biomechanical Factors and Failure of Transcervical Hip Fracture Repair
,”
Injury
,
32
(
3
), pp.
223
228
.10.1016/S0020-1383(00)00186-8
36.
Gardner
,
M. P.
,
Chong
,
A. C. M.
,
Pollock
,
A. G.
, and
Wooley
,
P. H.
,
2010
, “
Mechanical Evaluation of Large-Size Fourth-Generation Composite Femur and Tibia Models
,”
Ann. Biomed. Eng.
,
38
(
3
), pp.
613
620
.10.1007/s10439-009-9887-7
37.
Viberg
,
B.
,
Rasmussen
,
K. M. V.
,
Overgaard
,
S.
, and
Rogmark
,
C.
,
2017
, “
Poor Relation Between Biomechanical and Clinical Studies for the Proximal Femoral Locking Compression Plate
,”
Acta Orthop.
,
88
(
4
), pp.
427
433
.10.1080/17453674.2017.1304207
You do not currently have access to this content.