Abstract

As frequency of endovascular treatments for intracranial aneurysms increases, there is a growing need to understand the mechanisms for coil embolization failure. Computational fluid dynamics (CFD) modeling often simplifies modeling the endovascular coils as a homogeneous porous medium (PM), and focuses on the vascular wall endothelium, not considering the biomechanical environment of platelets. These assumptions limit the accuracy of computations for treatment predictions. We present a rigorous analysis using X-ray microtomographic imaging of the coils and a combination of Lagrangian (platelet) and Eulerian (endothelium) metrics. Four patient-specific, anatomically accurate in vitro flow phantoms of aneurysms are treated with the same patient-specific endovascular coils. Synchrotron tomography scans of the coil mass morphology are obtained. Aneurysmal hemodynamics are computationally simulated before and after coiling, using patient-specific velocity/pressure measurements. For each patient, we analyze the trajectories of thousands of platelets during several cardiac cycles, and calculate residence times (RTs) and shear exposure, relevant to thrombus formation. We quantify the inconsistencies of the PM approach, comparing them with coil-resolved (CR) simulations, showing the under- or overestimation of key hemodynamic metrics used to predict treatment outcomes. We fully characterize aneurysmal hemodynamics with converged statistics of platelet RT and shear stress history (SH), to augment the traditional wall shear stress (WSS) on the vascular endothelium. Incorporating microtomographic scans of coil morphology into hemodynamic analysis of coiled intracranial aneurysms, and augmenting traditional analysis with Lagrangian platelet metrics improves CFD predictions, and raises the potential for understanding and clinical translation of computational hemodynamics for intracranial aneurysm treatment outcomes.

References

References
1.
Bederson
,
J. B.
,
Connolly
,
E. S.
,
Batjer
,
H. H.
,
Dacey
,
R. G.
,
Dion
,
J. E.
,
Diringer
,
M. N.
,
Duldner
,
J. E.
,
Harbaugh
,
R. E.
,
Patel
,
A. B.
, and
Rosenwasser
,
R. H.
,
2009
, “
Guidelines for the Management of Aneurysmal Subarachnoid Hemorrhage: A Statement for Healthcare Professionals From a Special Writing Group of the Stroke Council
,”
Stroke
,
40
(
3
), pp.
994
1025
.10.1161/STROKEAHA.108.191395
2.
Meng
,
H.
,
Wang
,
Z.
,
Hoi
,
Y.
,
Gao
,
L.
,
Metaxa
,
E.
,
Swartz
,
D. D.
, and
Kolega
,
J.
,
2007
, “
Complex Hemodynamics at the Apex of an Arterial Bifurcation Induces Vascular Remodeling Resembling Cerebral Aneurysm Initiation
,”
Stroke
,
38
(
6
), pp.
1924
1931
.10.1161/STROKEAHA.106.481234
3.
Meng
,
H.
,
Tutino
,
V. M.
,
Xiang
,
J.
, and
Siddiqui
,
A.
,
2014
, “
High WSS or Low WSS? Complex Interactions of Hemodynamics With Intracranial Aneurysm Initiation, Growth, and Rupture: Toward a Unifying Hypothesis
,”
Am. J. Neuroradiol.
,
35
(
7
), pp.
1254
1262
.10.3174/ajnr.A3558
4.
Wiebers
,
D. O.
,
Whisnant
,
J. P.
,
Huston
,
J.
,
Meissner
,
I.
,
Brown
,
R. D.
,
Piepgras
,
D. G.
,
Forbes
,
G. S.
,
Thielen
,
K.
,
Nichols
,
D.
,
O'Fallon
,
W. M.
,
Peacock
,
J.
,
Jaeger
,
L.
,
Kassell
,
N. F.
,
Kongable-Beckman
,
G. L.
, and
Torner
,
J. C.
,
2003
, “
Unruptured Intracranial Aneurysms: Natural History, Clinical Outcome, and Risks of Surgical and Endovascular Treatment
,”
Lancet
,
362
(
9378
), pp.
103
110
.10.1016/S0140-6736(03)13860-3
5.
Molyneux
,
A. J.
,
Kerr
,
R. S.
,
Yu
,
L.-M.
,
Clarke
,
M.
,
Sneade
,
M.
,
Yarnold
,
J. A.
, and
Sandercock
,
P.
,
2005
, “
International Subarachnoid Aneurysm Trial (ISAT) of Neurosurgical Clipping Versus Endovascular Coiling in 2143 Patients With Ruptured Intracranial Aneurysms: A Randomised Comparison of Effects on Survival, Dependency, Seizures, Rebleeding, Subgroups, and Aneurysm Occlusion
,”
Lancet
,
366
(
9488
), pp.
809
817
.10.1016/S0140-6736(05)67214-5
6.
Briganti
,
F.
,
Leone
,
G.
,
Marseglia
,
M.
,
Mariniello
,
G.
,
Caranci
,
F.
,
Brunetti
,
A.
, and
Maiuri
,
F.
,
2015
, “
Endovascular Treatment of Cerebral Aneurysms Using Flow-Diverter Devices: A Systematic Review
,”
Neuroradiol. J.
,
28
(
4
), pp.
365
375
.10.1177/1971400915602803
7.
Crobeddu
,
E.
,
Lanzino
,
G.
,
Kallmes
,
D. F.
, and
Cloft
,
H. J.
,
2013
, “
Review of 2 Decades of Aneurysm-Recurrence Literature, Part 1: Reducing Recurrence After Endovascular Coiling
,”
Am. J. Neuroradiol.
,
34
(
2
), pp.
266
270
.10.3174/ajnr.A3032
8.
Ringer
,
A. J.
,
Rodriguez-Mercado
,
R.
,
Veznedaroglu
,
E.
,
Levy
,
E. I.
,
Hanel
,
R. A.
,
Mericle
,
R. A.
,
Lopes
,
D. K.
,
Lanzino
,
G.
, and
Boulos
,
A. S.
,
2009
, “
Defining the Risk of Retreatment for Aneurysm Recurrence or Residual After Initial Treatment by Endovascular Coiling
,”
Neurosurgery
,
65
(
2
), pp.
311
315
.10.1227/01.NEU.0000349922.05350.96
9.
Molyneux
,
A.
,
2002
, “
International Subarachnoid Aneurysm Trial (ISAT) of Neurosurgical Clipping Versus Endovascular Coiling in 2143 Patients With Ruptured Intracranial Aneurysms: A Randomised Trial
,”
Lancet
,
360
(
9342
), pp.
1267
1274
.10.1016/S0140-6736(02)11314-6
10.
Huang
,
Q.
,
Xu
,
J.
,
Cheng
,
J.
,
Wang
,
S.
,
Wang
,
K.
, and
Liu
,
J.-M.
,
2013
, “
Hemodynamic Changes by Flow Diverters in Rabbit Aneurysm Models: A Computational Fluid Dynamic Study Based on Micro-Computed Tomography Reconstruction
,”
Stroke
,
44
(
7
), pp.
1936
1941
.10.1161/STROKEAHA.113.001202
11.
Wootton
,
D. M.
, and
Ku
,
D. N.
,
1999
, “
Fluid Mechanics of Vascular Systems, Diseases, and Thrombosis
,”
Annu. Rev. Biomed. Eng.
,
1
(
1
), pp.
299
329
.10.1146/annurev.bioeng.1.1.299
12.
Cebral
,
J. R.
,
Mut
,
F.
,
Raschi
,
M.
,
Scrivano
,
E.
,
Ceratto
,
R.
,
Lylyk
,
P.
, and
Putman
,
C. M.
,
2011
, “
Aneurysm Rupture Following Treatment With Flow-Diverting Stents: Computational Hemodynamics Analysis of Treatment
,”
Am. J. Neuroradiol.
,
32
(
1
), pp.
27
33
.10.3174/ajnr.A2398
13.
Doddasomayajula
,
R.
,
Chung
,
B.
,
Hamzei-Sichani
,
F.
,
Putman
,
C. M.
, and
Cebral
,
J. R.
,
2017
, “
Differences in Hemodynamics and Rupture Rate of Aneurysms at the Bifurcation of the Basilar and Internal Carotid Arteries
,”
Am. J. Neuroradiol.
,
38
(
3
), pp.
570
576
.10.3174/ajnr.A5088
14.
Luo
,
B.
,
Yang
,
X.
,
Wang
,
S.
,
Li
,
H.
,
Chen
,
J.
,
Yu
,
H.
,
Zhang
,
Y.
,
Zhang
,
Y.
,
Mu
,
S.
,
Liu
,
Z.
, and
Ding
,
G.
,
2011
, “
High Shear Stress and Flow Velocity in Partially Occluded Aneurysms Prone to Recanalization
,”
Stroke
,
42
(
3
), pp.
745
753
.10.1161/STROKEAHA.110.593517
15.
Zhang
,
Y.
,
Chong
,
W.
, and
Qian
,
Y.
,
2013
, “
Investigation of Intracranial Aneurysm Hemodynamics Following Flow Diverter Stent Treatment
,”
Med. Eng. Phys.
,
35
(
5
), pp.
608
615
.10.1016/j.medengphy.2012.07.005
16.
McGah
,
P. M.
,
Levitt
,
M. R.
,
Barbour
,
M. C.
,
Morton
,
R. P.
,
Nerva
,
J. D.
,
Mourad
,
P. D.
,
Ghodke
,
B. V.
,
Hallam
,
D. K.
,
Sekhar
,
L. N.
,
Kim
,
L. J.
, and
Aliseda
,
A.
,
2014
, “
Accuracy of Computational Cerebral Aneurysm Hemodynamics Using Patient-Specific Endovascular Measurements
,”
Ann. Biomed. Eng.
,
42
(
3
), pp.
503
514
.10.1007/s10439-013-0930-3
17.
Chung
,
B.
, and
Cebral
,
J. R.
,
2015
, “
CFD for Evaluation and Treatment Planning of Aneurysms: Review of Proposed Clinical Uses and Their Challenges
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
122
138
.10.1007/s10439-014-1093-6
18.
Muschenborn
,
A. D.
,
Ortega
,
J. M.
,
Szafron
,
J. M.
,
Szafron
,
D. J.
, and
Maitland
,
D. J.
,
2013
, “
Porous Media Properties of Reticulated Shape Memory Polymer Foams and Mock Embolic Coils for Aneurysm Treatment
,”
Biomed. Eng. Online
,
12
(
1
), p.
103
.10.1186/1475-925X-12-103
19.
Kakalis
,
N. M. P.
,
Mitsos
,
A. P.
,
Byrne
,
J. V.
, and
Ventikos
,
Y.
,
2008
, “
The Haemodynamics of Endovascular Aneurysm Treatment: A Computational Modelling Approach for Estimating the Influence of Multiple Coil Deployment
,”
IEEE Trans. Med. Imaging
,
27
(
6
), pp.
814
824
.10.1109/TMI.2008.915549
20.
Mitsos
,
A. P.
,
Kakalis
,
N. M. P.
,
Ventikos
,
Y. P.
, and
Byrne
,
J. V.
,
2008
, “
Haemodynamic Simulation of Aneurysm Coiling in an Anatomically Accurate Computational Fluid Dynamics Model: Technical Note
,”
Neuroradiology
,
50
(
4
), pp.
341
347
.10.1007/s00234-007-0334-x
21.
Morales
,
H. G.
,
Larrabide
,
I.
,
Geers
,
A. J.
,
San Román
,
L.
,
Blasco
,
J.
,
Macho
,
J. M.
, and
Frangi
,
A. F.
,
2013
, “
A Virtual Coiling Technique for Image-Based Aneurysm Models by Dynamic Path Planning
,”
IEEE Trans. Med. Imaging
,
32
(
1
), pp.
119
129
.10.1109/TMI.2012.2219626
22.
Leng
,
X.
,
Wang
,
Y.
,
Xu
,
J.
,
Jiang
,
Y.
,
Zhang
,
X.
, and
Xiang
,
J.
,
2018
, “
Numerical Simulation of Patient-Specific Endovascular Stenting and Coiling for Intracranial Aneurysm Surgical Planning
,”
J. Trans. Med.
,
16
(
1
), p.
208
.10.1186/s12967-018-1573-9
23.
Babiker
,
M. H.
,
Chong
,
B.
,
Gonzalez
,
L. F.
,
Cheema
,
S.
, and
Frakes
,
D. H.
,
2013
, “
Finite Element Modeling of Embolic Coil Deployment: Multifactor Characterization of Treatment Effects on Cerebral Aneurysm Hemodynamics
,”
J. Biomech.
,
46
(
16
), pp.
2809
2816
.10.1016/j.jbiomech.2013.08.021
24.
Patel
,
P. K.
,
2019
, “
Virtual Coiling for Intracranial Aneurysm Based on Geometric Path Planning Using Coil Pre-Shape
,”
Doctoral dissertation
, State University of New York at Buffalo, New York.http://hdl.handle.net/10477/79989
25.
Chivukula
,
V. K.
,
Beckman
,
J. A.
,
Prisco
,
A. R.
,
Dardas
,
T.
,
Lin
,
S.
,
Smith
,
J. W.
,
Mokadam
,
N. A.
,
Aliseda
,
A.
, and
Mahr
,
C.
,
2018
, “
Left Ventricular Assist Device Inflow Cannula Angle and Thrombosis Risk
,”
Circ. Heart Failure
,
11
(
4
), p.
e004325
.10.1161/CIRCHEARTFAILURE.117.004325
26.
Mahr
,
C.
,
Chivukula
,
V. K.
,
McGah
,
P.
,
Prisco
,
A. R.
,
Beckman
,
J. A.
,
Mokadam
,
N. A.
, and
Aliseda
,
A.
,
2017
, “
Intermittent Aortic Valve Opening and Risk of Thrombosis in VAD Patients
,”
Asaio J.
,
63
(
4
), pp.
425
432
.10.1097/MAT.0000000000000512
27.
Consolo
,
F.
,
Sheriff
,
J.
,
Gorla
,
S.
,
Magri
,
N.
,
Bluestein
,
D.
,
Pappalardo
,
F.
,
Slepian
,
M. J.
,
Fiore
,
G. B.
, and
Redaelli
,
A.
,
2017
, “
High Frequency Components of Hemodynamic Shear Stress Profiles Are a Major Determinant of Shear-Mediated Platelet Activation in Therapeutic Blood Recirculating Devices
,”
Sci. Rep.
,
7
(
1
), p.
4994
.10.1038/s41598-017-05130-5
28.
Bluestein
,
D.
,
Einav
,
S.
, and
Slepian
,
M. J.
,
2013
, “
Device Thrombogenicity Emulation: A Novel Methodology for Optimizing the Thromboresistance of Cardiovascular Devices
,”
J. Biomech.
,
46
(
2
), pp.
338
344
.10.1016/j.jbiomech.2012.11.033
29.
Karmonik
,
C.
,
Yen
,
C.
,
Grossman
,
R. G.
,
Klucznik
,
R.
, and
Benndorf
,
G.
,
2009
, “
Intra-Aneurysmal Flow Patterns and Wall Shear Stresses Calculated With Computational Flow Dynamics in an Anterior Communicating Artery Aneurysm Depend on Knowledge of Patient-Specific Inflow Rates
,”
Acta Neurochir.
,
151
(
5
), pp.
479
485
.10.1007/s00701-009-0247-z
30.
Himburg
,
H. A.
,
Grzybowski
,
D. M.
,
Hazel
,
A. L.
,
LaMack
,
J. A.
,
Li
,
X.-M.
, and
Friedman
,
M. H.
,
2004
, “
Spatial Comparison Between Wall Shear Stress Measures and Porcine Arterial Endothelial Permeability
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
286
(
5
), pp.
H1916
H1922
.10.1152/ajpheart.00897.2003
31.
Lee
,
S.-W.
,
Antiga
,
L.
, and
Steinman
,
D. A.
,
2009
, “
Correlations Among Indicators of Disturbed Flow at the Normal Carotid Bifurcation
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061013
.10.1115/1.3127252
32.
Levitt
,
M. R.
,
McGah
,
P. M.
,
Aliseda
,
A.
,
Mourad
,
P. D.
,
Nerva
,
J. D.
,
Vaidya
,
S. S.
,
Morton
,
R. P.
,
Ghodke
,
B. V.
, and
Kim
,
L. J.
,
2014
, “
Cerebral Aneurysms Treated With Flow-Diverting Stents: Computational Models With Intravascular Blood Flow Measurements
,”
Am. J. Neuroradiol.
,
35
(
1
), pp.
143
–14
8
.10.3174/ajnr.A3624
33.
Chivukula
,
V. K.
,
Levitt
,
M. R.
,
Clark
,
A.
,
Barbour
,
M. C.
,
Sansom
,
K.
,
Johnson
,
L.
,
Kelly
,
C. M.
,
Geindreau
,
C.
,
Rolland Du Roscoat
,
S.
,
Kim
,
L. J.
, and
Aliseda
,
A.
,
2019
, “
Reconstructing Patient-Specific Cerebral Aneurysm Vasculature for In Vitro Investigations and Treatment Efficacy Assessments
,”
J. Clin. Neurosci.
,
61
, pp.
153
159
.10.1016/j.jocn.2018.10.103
34.
Levitt
,
M. R.
,
Barbour
,
M. C.
,
Rolland Du Roscoat
,
S.
,
Geindreau
,
C.
,
Chivukula
,
V. K.
,
McGah
,
P. M.
,
Nerva
,
J. D.
,
Morton
,
R. P.
,
Kim
,
L. J.
, and
Aliseda
,
A.
,
2017
, “
Computational Fluid Dynamics of Cerebral Aneurysm Coiling Using High-Resolution and High-Energy Synchrotron X-Ray Microtomography: Comparison With the Homogeneous Porous Medium Approach
,”
J. NeuroInterventional Surg.
,
9
(
8
).10.1136/neurintsurg-2016-012479
35.
Barbour
,
M.
,
2018
, “
Computational and Experimental Investigation Into the Hemodynamics of Endovascularly Treated Cerebral Aneurysms
,”
ProQuest dissertations and theses
.http://hdl.handle.net/1773/41820
36.
Aliseda
,
A.
,
Chivukula
,
V.
,
Mcgah
,
P.
,
Prisco
,
A.
,
Beckman
,
J.
,
Garcia
,
G.
,
Mokadam
,
N.
, and
Mahr
,
C.
,
2017
, “
LVAD Outflow Graft Angle and Thrombosis Risk
,”
Asaio J.
,
63
(
1
), pp.
14
23
.10.1097/MAT.0000000000000443
37.
Metaxa
,
E.
,
Tremmel
,
M.
,
Natarajan
,
S. K.
,
Xiang
,
J.
,
Paluch
,
R. A.
,
Mandelbaum
,
M.
,
Siddiqui
,
A. H.
,
Kolega
,
J.
,
Mocco
,
J.
, and
Meng
,
H.
,
2010
, “
Characterization of Critical Hemodynamics Contributing to Aneurysmal Remodeling at the Basilar Terminus in a Rabbit Model
,”
Stroke
,
41
(
8
), pp.
1774
1782
.10.1161/STROKEAHA.110.585992
38.
Shojima
,
M.
,
Oshima
,
M.
,
Takagi
,
K.
,
Torii
,
R.
,
Hayakawa
,
M.
,
Katada
,
K.
,
Morita
,
A.
, and
Kirino
,
T.
,
2004
, “
Magnitude and Role of Wall Shear Stress on Cerebral Aneurysm: Computational Fluid Dynamic Study of 20 Middle Cerebral Artery Aneurysms
,”
Stroke
,
35
(
11
), pp.
2500
2505
.10.1161/01.STR.0000144648.89172.0f
39.
Fogelson
,
A. L.
, and
Neeves
,
K. B.
,
2015
, “
Fluid Mechanics of Blood Clot Formation
,”
Annu. Rev. Fluid Mech.
,
47
(
1
), pp.
377
403
.10.1146/annurev-fluid-010814-014513
40.
Rowley
,
J. W.
,
Finn
,
A. V.
,
French
,
P. A.
,
Jennings
,
L. K.
,
Bluestein
,
D.
,
Gross
,
P. L.
,
Freedman
,
J. E.
,
Steinhubl
,
S. R.
,
Zimmerman
,
G. A.
,
Becker
,
R. C.
,
Dauerman
,
H. L.
, and
Smyth
,
S. S.
,
2012
, “
Cardiovascular Devices and Platelet Interactions Understanding the Role of Injury, Flow, and Cellular Responses
,”
Circ.: Cardiovasc. Interventions
,
5
(
2
), pp.
296
304
.10.1161/CIRCINTERVENTIONS.111.965426
41.
Hansen
,
C. E.
,
Qiu
,
Y.
,
McCarty
,
O. J. T.
, and
Lam
,
W. A.
,
2018
, “
Platelet Mechanotransduction
,”
Annu. Rev. Biomed. Eng.
,
20
(
1
), pp.
253
275
.10.1146/annurev-bioeng-062117-121215
42.
Sheriff
,
J.
,
Soares
,
J. S.
,
Xenos
,
M.
,
Jesty
,
J.
, and
Bluestein
,
D.
,
2013
, “
Evaluation of Shear-Induced Platelet Activation Models Under Constant and Dynamic Shear Stress Loading Conditions Relevant to Devices
,”
Ann. Biomed. Eng.
,
41
(
6
), pp.
1279
1296
.10.1007/s10439-013-0758-x
43.
Umeda
,
Y.
,
Ishida
,
F.
,
Tsuji
,
M.
,
Furukawa
,
K.
,
Shiba
,
M.
,
Yasuda
,
R.
,
Toma
,
N.
,
Sakaida
,
H.
, and
Suzuki
,
H.
,
2017
, “
Computational Fluid Dynamics (CFD) Using Porous Media Modeling Predicts Recurrence After Coiling of Cerebral Aneurysms
,”
PLoS One
,
12
(
12
), p.
e0190222
.10.1371/journal.pone.0190222
44.
Cha
,
K. S.
,
Balaras
,
E.
,
Lieber
,
B. B.
,
Sadasivan
,
C.
, and
Wakhloo
,
A. K.
,
2007
, “
Modeling the Interaction of Coils With the Local Blood Flow After Coil Embolization of Intracranial Aneurysms
,”
ASME J. Biomech. Eng.
,
129
(
6
), p.
873
.10.1115/1.2800773
45.
Groden
,
C.
,
Laudan
,
J.
,
Gatchell
,
S.
, and
Zeumer
,
H.
,
2001
, “
Three-Dimensional Pulsatile Flow Simulation Before and After Endovascular Coil Embolization of a Terminal Cerebral Aneurysm
,”
J. Cereb. Blood Flow Metab.
,
21
(
12
), pp.
1464
1471
.10.1097/00004647-200112000-00011
46.
Chueh
,
J.-Y.
,
Vedantham
,
S.
,
Wakhloo
,
A. K.
,
Carniato
,
S. L.
,
Puri
,
A. S.
,
Bzura
,
C.
,
Coffin
,
S.
,
Bogdanov
,
A. A.
, and
Gounis
,
M. J.
,
2015
, “
Aneurysm Permeability Following Coil Embolization: Packing Density and Coil Distribution
,”
J. NeuroInterventional Surg.
,
7
(
9
), pp.
676
681
.10.1136/neurintsurg-2014-011289
47.
Koponen
,
A.
,
Kataja
,
M.
, and
Timonen
,
J.
,
1997
, “
Permeability and Effective Porosity of Porous Media
,”
Phys. Rev. E
,
56
(
3
), pp.
3319
3325
.10.1103/PhysRevE.56.3319
48.
Yadollahi-Farsani
,
H.
,
Herrmann
,
M.
,
Frakes
,
D.
, and
Chong
,
B.
,
2019
, “
A New Method for Simulating Embolic Coils as Heterogeneous Porous Media
,”
Cardiovasc. Eng. Technol..
,
10
(
1
), pp.
32
45
.10.1007/s13239-018-00383-1
49.
Reza
,
M. M. S.
, and
Arzani
,
A.
,
2019
, “
A Critical Comparison of Different Residence Time Measures in Aneurysms
,”
J. Biomech.
,
88
, pp.
122
129
.10.1016/j.jbiomech.2019.03.028
You do not currently have access to this content.