Abstract

In this study, we investigated how animal orientation within a shock tube influences the biomechanical responses of the brain and cerebral vasculature of a rat when exposed to a blast wave. Using three-dimensional finite element (FE) models, we computed the biomechanical responses when the rat was exposed to the same blast-wave overpressure (100 kPa) in a prone (P), vertical (V), or head-only (HO) orientation. We validated our model by comparing the model-predicted and the experimentally measured brain pressures at the lateral ventricle. For all three orientations, the maximum difference between the predicted and measured pressures was 11%. Animal orientation markedly influenced the predicted peak pressure at the anterior position along the midsagittal plane of the brain (P = 187 kPa; V = 119 kPa; and HO = 142 kPa). However, the relative differences in the predicted peak pressure between the orientations decreased at the medial (21%) and posterior (7%) positions. In contrast to the pressure, the peak strain in the prone orientation relative to the other orientations at the anterior, medial, and posterior positions was 40–88% lower. Similarly, at these positions, the cerebral vasculature strain in the prone orientation was lower than the strain in the other orientations. These results show that animal orientation in a shock tube influences the biomechanical responses of the brain and the cerebral vasculature of the rat, strongly suggesting that a direct comparison of changes in brain tissue observed from animals exposed at different orientations can lead to incorrect conclusions.

References

References
1.
Ahlers
,
S.
,
Vasserman-Stokes
,
E.
,
Shaughness
,
M.
,
Hall
,
A.
,
Shear
,
D.
,
Chavko
,
M.
,
McCarron
,
R.
, and
Stone
,
J.
,
2012
, “
Assessment of the Effects of Acute and Repeated Exposure to Blast Overpressure in Rodents: Toward a Greater Understanding of Blast and the Potential Ramifications for Injury in Humans Exposed to Blast
,”
Front. Neurol.
,
3
(
32
), pp. 1–12. 10.3389/fneur.2012.00032
2.
Arun
,
P.
,
Wilder
,
D. M.
,
Eken
,
O.
,
Urioste
,
R.
,
Batuure
,
A.
,
Sajja
,
S.
,
Albert
,
S. V.
,
Wang
,
Y.
,
Gist
,
I. D.
, and
Long
,
J. B.
,
2020
, “
Long-Term Effects of Blast Exposure: A Functional Study in Rats Using an Advanced Blast Simulator
,”
J. Neurotrauma
,
37
(
4
), pp.
647
655
.10.1089/neu.2019.6591
3.
Bolander
,
R.
,
Mathie
,
B.
,
Bir
,
C.
,
Ritzel
,
D.
, and
VandeVord
,
P.
,
2011
, “
Skull Flexure as a Contributing Factor in the Mechanism of Injury in the Rat When Exposed to a Shock Wave
,”
Ann. Biomed. Eng.
,
39
(
10
), pp.
2550
2559
.10.1007/s10439-011-0343-0
4.
Chafi
,
M. S.
,
Karami
,
G.
, and
Ziejewski
,
M.
,
2010
, “
Biomechanical Assessment of Brain Dynamic Responses Due to Blast Pressure Waves
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
490
504
.10.1007/s10439-009-9813-z
5.
Chavko
,
M.
,
Watanabe
,
T.
,
Adeeb
,
S.
,
Lankasky
,
J.
,
Ahlers
,
S. T.
, and
McCarron
,
R. M.
,
2011
, “
Relationship Between Orientation to a Blast and Pressure Wave Propagation Inside the Rat Brain
,”
J. Neurosci. Methods
,
195
(
1
), pp.
61
66
.10.1016/j.jneumeth.2010.11.019
6.
Feng
,
K.
,
Zhang
,
L.
,
Jin
,
X.
,
Chen
,
C.
,
Kallakuri
,
S.
,
Saif
,
T.
,
Cavanaugh
,
J.
, and
King
,
A.
,
2016
, “
Biomechanical Responses of the Brain in Swine Subject to Free-Field Blasts
,”
Front. Neurol.
,
7
(
179
), pp.
1
12
.10.3389/fneur.2016.00179
7.
Garman
,
R. H.
,
Jenkins
,
L. W.
,
Switzer
,
R. C.
, 3rd
,
Bauman
,
R. A.
,
Tong
,
L. C.
,
Swauger
,
P. V.
,
Parks
,
S. A.
,
Ritzel
,
D. V.
,
Dixon
,
C. E.
,
Clark
,
R. S.
,
Bayir
,
H.
,
Kagan
,
V.
,
Jackson
,
E. K.
, and
Kochanek
,
P. M.
,
2011
, “
Blast Exposure in Rats With Body Shielding is Characterized Primarily by Diffuse Axonal Injury
,”
J. Neurotrauma
,
28
(
6
), pp.
947
959
.10.1089/neu.2010.1540
8.
Heyburn
,
L.
,
Abutarboush
,
R.
,
Goodrich
,
S.
,
Urioste
,
R.
,
Batuure
,
A.
,
Statz
,
J.
,
Wilder
,
D.
,
Ahlers
,
S. T.
,
Long
,
J. B.
, and
Sajja
,
V. S. S. S.
,
2019
, “
Repeated Low-Level Blast Overpressure Leads to Endovascular Disruption and Alterations in TDP-43 and Piezo2 in a Rat Model of Blast TBI
,”
Front. Neurol.
,
10
(
766
), pp.
1
10
.10.3389/fneur.2019.00766
9.
Leonardi
,
A.
,
Keane
,
N. J.
,
Bir
,
C. A.
,
Ryan
,
A. G.
,
Xu
,
L.
, and
Vandevord
,
P. J.
,
2012
, “
Head Orientation Affects the Intracranial Pressure Response Resulting From Shock Wave Loading in the Rat
,”
J. Biomech.
,
45
(
15
), pp.
2595
2602
.10.1016/j.jbiomech.2012.08.024
10.
Long
,
J. B.
,
Bentley
,
T. L.
,
Wessner
,
K. A.
,
Cerone
,
C.
,
Sweeney
,
S.
, and
Bauman
,
R. A.
,
2009
, “
Blast Overpressure in Rats: Recreating a Battlefield Injury in the Laboratory
,”
J. Neurotrauma
,
26
(
6
), pp.
827
840
.10.1089/neu.2008.0748
11.
Sawyer
,
T. W.
,
Wang
,
Y.
,
Ritzel
,
D. V.
,
Josey
,
T.
,
Villanueva
,
M.
,
Shei
,
Y.
,
Nelson
,
P.
,
Hennes
,
G.
,
Weiss
,
T.
,
Vair
,
C.
,
Fan
,
C.
, and
Barnes
,
J.
,
2016
, “
High-Fidelity Simulation of Primary Blast: Direct Effects on the Head
,”
J. Neurotrauma
,
33
(
13
), pp.
1181
1193
.10.1089/neu.2015.3914
12.
Skotak
,
M.
,
Wang
,
F.
,
Alai
,
A.
,
Holmberg
,
A.
,
Harris
,
S.
,
Switzer
,
R. C.
, and
Chandra
,
N.
,
2013
, “
Rat Injury Model Under Controlled Field-Relevant Primary Blast Conditions: Acute Response to a Wide Range of Peak Overpressures
,”
J. Neurotrauma
,
30
(
13
), pp.
1147
1160
.10.1089/neu.2012.2652
13.
Sosa
,
M. A.
,
De Gasperi
,
R.
,
Paulino
,
A. J.
,
Pricop
,
P. E.
,
Shaughness
,
M. C.
,
Maudlin-Jeronimo
,
E.
,
Hall
,
A. A.
,
Janssen
,
W. G.
,
Yuk
,
F. J.
,
Dorr
,
N. P.
,
Dickstein
,
D. L.
,
McCarron
,
R. M.
,
Chavko
,
M.
,
Hof
,
P. R.
,
Ahlers
,
S. T.
, and
Elder
,
G. A.
,
2013
, “
Blast Overpressure Induces Shear-Related Injuries in the Brain of Rats Exposed to a Mild Traumatic Brain Injury
,”
Acta Neuropathol. Commun.
,
1
(
1
), p.
15
.10.1186/2051-5960-1-51
14.
Cernak
,
I.
,
2010
, “
The Importance of Systemic Response in the Pathobiology of Blast-Induced Neurotrauma
,”
Front. Neurol.
,
1
(
151
), pp.
1
9
.10.3389/fneur.2010.00151
15.
Kuriakose
,
M.
,
Rama Rao
,
K. V.
,
Younger
,
D.
, and
Chandra
,
N.
,
2018
, “
Temporal and Spatial Effects of Blast Overpressure on Blood-Brain Barrier Permeability in Traumatic Brain Injury
,”
Sci. Rep.
,
8
(
1
), pp.
1
14
.10.1038/s41598-018-26813-7
16.
Bryden
,
D. W.
,
Tilghman
,
J. I.
, and
Hinds
,
S. R.
,
2019
, “
Blast-Related Traumatic Brain Injury: Current Concepts and Research Considerations
,”
J. Exp. Neurosci.
,
13
, pp.
1
11
.10.1177/1179069519872213
17.
Hicks
,
R. R.
,
Fertig
,
S. J.
,
Desrocher
,
R. E.
,
Koroshetz
,
W. J.
, and
Pancrazio
,
J. J.
,
2010
, “
Neurological Effects of Blast Injury
,”
J. Trauma
,
68
(
5
), pp.
1257
1263
.10.1097/TA.0b013e3181d8956d
18.
Risling
,
M.
,
Plantman
,
S.
,
Angeria
,
M.
,
Rostami
,
E.
,
Bellander
,
B. M.
,
Kirkegaard
,
M.
,
Arborelius
,
U.
, and
Davidsson
,
J.
,
2011
, “
Mechanisms of Blast Induced Brain Injuries, Experimental Studies in Rats
,”
NeuroImage
,
54
, pp.
S89
S97
.10.1016/j.neuroimage.2010.05.031
19.
Rodriguez
,
U. A.
,
Zeng
,
Y.
,
Deyo
,
D.
,
Parsley
,
M. A.
,
Hawkins
,
B. E.
,
Prough
,
D. S.
, and
DeWitt
,
D. S.
,
2018
, “
Effects of Mild Blast Traumatic Brain Injury on Cerebral Vascular, Histopathological, and Behavioral Outcomes in Rats
,”
J. Neurotrauma
,
35
(
2
), pp.
375
392
.10.1089/neu.2017.5256
20.
Sajja
,
V. S. S. S.
,
Hubbard
,
W. B.
,
Hall
,
C. S.
,
Ghoddoussi
,
F.
,
Galloway
,
M. P.
, and
VandeVord
,
P. J.
,
2015
, “
Enduring Deficits in Memory and Neuronal Pathology After Blast-Induced Traumatic Brain Injury
,”
Sci. Rep.
,
5
(
1
), pp.
1
10
.10.1038/srep15075
21.
Sundaramurthy
,
A.
,
Alai
,
A.
,
Ganpule
,
S.
,
Holmberg
,
A.
,
Plougonven
,
E.
, and
Chandra
,
N.
,
2012
, “
Blast-Induced Biomechanical Loading of the Rat: An Experimental and Anatomically Accurate Computational Blast Injury Model
,”
J. Neurotrauma
,
29
(
13
), pp.
2352
2364
.10.1089/neu.2012.2413
22.
Sajja
,
V. S.
,
Arun
,
P.
,
Van Albert
,
S. A.
, and
Long
,
J. B.
,
2018
, “
Rodent Model of Primary Blast-Induced Traumatic Brain Injury: Guidelines to Blast Methodology
,”
Pre-Clinical and Clinical Methods in Brain Trauma Research
,
A. K.
Srivastava
and
C. S.
Cox
, eds.,
Springer
,
New York
, pp.
123
138
.
23.
Kovesdi
,
E.
,
Kamnaksh
,
A.
,
Wingo
,
D.
,
Ahmed
,
F.
,
Grunberg
,
N.
,
Long
,
J.
,
Kasper
,
C.
, and
Agoston
,
D.
,
2012
, “
Acute Minocycline Treatment Mitigates the Symptoms of Mild Blast-Induced Traumatic Brain Injury
,”
Front. Neurol.
,
3
(
111
), pp.
1
18
.10.3389/fneur.2012.00111
24.
Kwon
,
S.-K.
,
Kovesdi
,
E.
,
Gyorgy
,
A.
,
Wingo
,
D.
,
Kamnaksh
,
A.
,
Walker
,
J.
,
Long
,
J.
, and
Agoston
,
D.
,
2011
, “
Stress and Traumatic Brain Injury: A Behavioral, Proteomics, and Histological Study
,”
Front. Neurol.
,
2
(
12
), pp.
1
14
.10.3389/fneur.2011.00012
25.
Abutarboush
,
R.
,
Gu
,
M.
,
Kawoos
,
U.
,
Mullah
,
S. H.
,
Chen
,
Y.
,
Goodrich
,
S. Y.
,
Lashof-Sullivan
,
M.
,
McCarron
,
R. M.
,
Statz
,
J. K.
,
Bell
,
R. S.
,
Stone
,
J. R.
, and
Ahlers
,
S. T.
,
2019
, “
Exposure to Blast Overpressure Impairs Cerebral Microvascular Responses and Alters Vascular and Astrocytic Structure
,”
J. Neurotrauma
,
36
(
22
), pp.
3138
3157
.10.1089/neu.2019.6423
26.
Hubbard
,
W. B.
,
Greenberg
,
S.
,
Norris
,
C.
,
Eck
,
J.
,
Lavik
,
E.
, and
VandeVord
,
P.
,
2017
, “
Distinguishing the Unique Neuropathological Profile of Blast Polytrauma
,”
Oxid. Med. Cell. Longevity
,
2017
(
5175249
), pp.
1
11
.10.1155/2017/5175249
27.
Kochanek
,
P. M.
,
Dixon
,
C. E.
,
Shellington
,
D. K.
,
Shin
,
S. S.
,
Bayır
,
H.
,
Jackson
,
E. K.
,
Kagan
,
V. E.
,
Yan
,
H. Q.
,
Swauger
,
P. V.
,
Parks
,
S. A.
,
Ritzel
,
D. V.
,
Bauman
,
R.
,
Clark
,
R. S. B.
,
Garman
,
R. H.
,
Bandak
,
F.
,
Ling
,
G.
, and
Jenkins
,
L. W.
,
2013
, “
Screening of Biochemical and Molecular Mechanisms of Secondary Injury and Repair in the Brain After Experimental Blast-Induced Traumatic Brain Injury in Rats
,”
J. Neurotrauma
,
30
(
11
), pp.
920
937
.10.1089/neu.2013.2862
28.
Unnikrishnan
,
G.
,
Mao
,
H.
,
Sundaramurthy
,
A.
,
Bell
,
E. D.
,
Yeoh
,
S.
,
Monson
,
K.
, and
Reifman
,
J.
,
2019
, “
A 3-D Rat Brain Model for Blast-Wave Exposure: Effects of Brain Vasculature and Material Properties
,”
Ann. Biomed. Eng.
,
47
(
9
), pp.
2033
2044
.10.1007/s10439-019-02277-2
29.
Keenan
,
M. A.
,
Stabin
,
M. G.
,
Segars
,
W. P.
, and
Fernald
,
M. J.
,
2010
, “
RADAR Realistic Animal Model Series for Dose Assessment
,”
J. Nucl. Med.
,
51
(
3
), pp.
471
476
.10.2967/jnumed.109.070532
30.
Rakesh
,
V.
,
Stallings
,
J. D.
,
Helwig
,
B. G.
,
Leon
,
L. R.
,
Jackson
,
D. A.
, and
Reifman
,
J.
,
2013
, “
A 3-D Mathematical Model to Identify Organ-Specific Risks in Rats During Thermal Stress
,”
J. Appl. Physiol.
,
115
(
12
), pp.
1822
1837
.10.1152/japplphysiol.00589.2013
31.
Rakesh
,
V.
,
Stallings
,
J. D.
, and
Reifman
,
J.
,
2014
, “
A Virtual Rat for Simulating Environmental and Exertional Heat Stress
,”
J. Appl. Physiol.
,
117
(
11
), pp.
1278
1286
.10.1152/japplphysiol.00614.2014
32.
Haslach
,
H. W.
,
Gipple
,
J. M.
, and
Leahy
,
L. N.
,
2017
, “
Influence of High Deformation Rate, Brain Region, Transverse Compression, and Specimen Size on Rat Brain Shear Stress Morphology and Magnitude
,”
J. Mech. Behav. Biomed. Mater.
,
68
, pp.
88
102
.10.1016/j.jmbbm.2017.01.036
33.
Bell
,
D.
,
Converse
,
M.
,
Mao
,
H.
,
Unnikrishnan
,
G.
,
Reifman
,
J.
, and
Monson
,
K.
,
2018
, “
Material Properties of Rat Middle Cerebral Arteries at High Strain Rates
,”
ASME J. Biomech. Eng.
,
140
(
7
), p.
071004
.10.1115/1.4039625
34.
Sundaramurthy
,
A.
,
Skotak
,
M.
,
Alay
,
E.
,
Unnikrishnan
,
G.
,
Mao
,
H.
,
Duan
,
X.
,
Williams
,
S. T.
,
Harding
,
T. H.
,
Chandra
,
N.
, and
Reifman
,
J.
,
2018
, “
Assessment of the Effectiveness of Combat Eyewear Protection Against Blast Overpressure
,”
ASME J. Biomech. Eng.
,
140
(
7
), p.
071003
.10.1115/1.4039823
35.
Bir
,
C.
,
Bolander
,
R.
,
Leonardi
,
A.
,
Ritzel
,
D.
,
VandeVord
,
P.
, and
Dingell
,
J.
,
2011
, “
A Biomechanical Prospective of Blast Injury Neurotrauma
,”
Proceedings of the HFM 207 NATO Symposium on a Survey of Blast Injury Across the Full Landscape of Military Science
,
Halifax, NS, Canada
, Oct. 17, Paper No. MP-HFM-207-27.
36.
Panzer
,
M. B.
,
Myers
,
B. S.
, and
Bass
,
C. R.
,
2013
, “
Mesh Considerations for Finite Element Blast Modelling in Biomechanics
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
6
), pp.
612
621
.10.1080/10255842.2011.629615
37.
Kahali
,
S.
,
Townsend
,
M.
,
Mendez Nguyen
,
M.
,
Kim
,
J.
,
Alay
,
E.
,
Skotak
,
M.
, and
Chandra
,
N.
,
2020
, “
The Evolution of Secondary Flow Phenomena and Their Effect on Primary Shock Conditions in Shock Tubes: Experimentation and Numerical Model
,”
PLoS One
,
15
(
1
), p.
e0227125
.10.1371/journal.pone.0227125
38.
Needham
,
C. E.
,
Ritzel
,
D.
,
Rule
,
G. T.
,
Wiri
,
S.
, and
Young
,
L.
,
2015
, “
Blast Testing Issues and TBI: Experimental Models That Lead to Wrong Conclusions
,”
Front. Neurol.
,
6
(
72
), pp.
1
10
.10.3389/fneur.2015.00072
39.
Garimella
,
H. T.
, and
Kraft
,
R. H.
,
2017
, “
Modeling the Mechanics of Axonal Fiber Tracts Using the Embedded Finite Element Method
,”
Int. J. Numer. Methods Biomed. Eng.
,
33
(
5
), p.
e2823
.10.1002/cnm.2823
40.
Matveeva
,
A. V.
,
Romanov
,
S.
,
Lomov
, and
Gorbatikh
,
L.
,
2015
, “
Application of the Embedded Element Technique to the Modelling of Nano-Engineered Fiber-Reinforced Composites
,”
20th International Conference on Composite Materials
,
Copenhagen, Denmark
, July 19–24, Paper No. 2102–2.http://www.iccm-central.org/Proceedings/ICCM20proceedings/papers/paper-2102-2.pdf
You do not currently have access to this content.