Abstract

Electrochemically aligned collagen (ELAC) threads fabricated by the isoelectric focusing (IF) of collagen have previously shown potential in tissue engineering and more recently in the fabrication of biohybrid robot structures. For applications in biohybrid robotics, ELAC structures are needed that are both robust and compliant enough to facilitate muscle actuation. However, studies on the effects of IF parameters, and the interactions of such fabrication parameters, on the mechanical and geometric properties of resulting ELAC threads have not been previously found in literature. Understanding the impact of these manufacturing parameters on the material properties is critical to facilitate biohybrid robot design. In this study, the effects of IF duration, IF voltage, and collagen solution concentration were investigated and showed statistically significant effects on adjusting ELAC properties via single-factor experiments. The interactions between parameters exhibited significant joint effects on ELAC property tuning through two-factor experiments. Scanning electron microscopy and 2,4,6-trinitrobenzenesulfonic (TNBS) assays revealed the correlation between high mechanical properties and a combination of low porosity and high degree of crosslinking. By simply tuning IF parameters without changing other fabrication steps, such as crosslinker concentration, ELAC threads with a wide range of mechanical and geometric properties were fabricated. The average tensile modulus of the resulting ELAC threads ranged from 198 ± 90 to 758 ± 138 MPa. The average cross-sectional area ranged from 7756 ± 1000 to 1775 ± 457 μm2. The resultant mapping between IF parameters and ELAC thread properties enabled the production of strong and flexible threads with customizable properties.

References

References
1.
Dewle
,
A.
,
Pathak
,
N.
,
Rakshasmare
,
P.
, and
Srivastava
,
A.
,
2020
, “
Multifarious Fabrication Approaches of Producing Aligned Collagen Scaffolds for Tissue Engineering Applications
,”
ACS Biomater. Sci. Eng.
,
6
(
2
), pp.
779
797
.10.1021/acsbiomaterials.9b01225
2.
Zeugolis
,
D. I.
,
Khew
,
S. T.
,
Yew
,
E. S. Y.
,
Ekaputra
,
A. K.
,
Tong
,
Y. W.
,
Yung
,
L. Y. L.
,
Hutmacher
,
D. W.
,
Sheppard
,
C.
, and
Raghunath
,
M.
,
2008
, “
Electro-Spinning of Pure Collagen Nano-Fibres—Just an Expensive Way to Make Gelatin?
,”
Biomaterials
,
29
(
15
), pp.
2293
2305
.10.1016/j.biomaterials.2008.02.009
3.
Rho
,
K. S.
,
Jeong
,
L.
,
Lee
,
G.
,
Seo
,
B. M.
,
Park
,
Y. J.
,
Hong
,
S. D.
,
Roh
,
S.
,
Cho
,
J. J.
,
Park
,
W. H.
, and
Min
,
B. M.
,
2006
, “
Electrospinning of Collagen Nanofibers: Effects on the Behavior of Normal Human Keratinocytes and Early-Stage Wound Healing
,”
Biomaterials
,
27
(
8
), pp.
1452
1461
.10.1016/j.biomaterials.2005.08.004
4.
Matthews
,
J. A.
,
Wnek
,
G. E.
,
Simpson
,
D. G.
, and
Bowlin
,
G. L.
,
2002
, “
Electrospinning of Collagen Nanofibers
,”
Biomacromolecules
,
3
(
2
), pp.
232
238
.10.1021/bm015533u
5.
Lee
,
P.
,
Lin
,
R.
,
Moon
,
J.
, and
Lee
,
L. P.
,
2006
, “
Microfluidic Alignment of Collagen Fibers for In Vitro Cell Culture
,”
Biomed. Microdev.
,
8
(
1
), pp.
35
41
.10.1007/s10544-006-6380-z
6.
Caves
,
J. M.
,
Kumar
,
V. A.
,
Wen
,
J.
,
Cui
,
W.
,
Martinez
,
A.
,
Apkarian
,
R.
,
Coats
,
J. E.
,
Berland
,
K.
, and
Chaikof
,
E. L.
,
2009
, “
Fibrillogenesis in Continuously Spun Synthetic Collagen Fiber
,”
J. Biomed. Mater. Res.-Part B
,
93B
(
1
), pp.
24
38
.10.1002/jbm.b.31555
7.
Torbet
,
J.
, and
Ronzière
,
M. C.
,
1984
, “
Magnetic Alignment of Collagen During Self-Assembly
,”
Biochem. J.
,
219
(
3
), pp.
1057
1059
.10.1042/bj2191057
8.
Kishore
,
V.
,
Bullock
,
W.
,
Sun
,
X.
,
Van Dyke
,
W. S.
, and
Akkus
,
O.
,
2012
, “
Tenogenic Differentiation of Human MSCs Induced by the Topography of Electrochemically Aligned Collagen Threads
,”
Biomaterials
,
33
(
7
), pp.
2137
2144
.10.1016/j.biomaterials.2011.11.066
9.
Younesi
,
M.
,
Islam
,
A.
,
Kishore
,
V.
,
Anderson
,
J. M.
, and
Akkus
,
O.
,
2014
, “
Tenogenic Induction of Human MSCs by Anisotropically Aligned Collagen Biotextiles
,”
Adv. Funct. Mater.
,
24
(
36
), pp.
5762
5770
.10.1002/adfm.201400828
10.
Learn
,
G. D.
,
McClellan
,
P. E.
,
Knapik
,
D. M.
,
Cumsky
,
J. L.
,
Webster-Wood
,
V.
,
Anderson
,
J. M.
,
Gillespie
,
R. J.
, and
Akkus
,
O.
,
2019
, “
Woven Collagen Biotextiles Enable Mechanically Functional Rotator Cuff Tendon Regeneration During Repair of Segmental Tendon Defects In Vivo
,”
J. Biomed. Mater. Res.-Part B
,
107
(
6
), pp.
1864
1876
.10.1002/jbm.b.34279
11.
Cheng
,
X.
,
Edwards
,
N.
,
Leung
,
K.
,
Zhang
,
D.
, and
Christy
,
R. J.
,
2016
, “
Preparation and In Vitro Evaluation of Electrochemically-Aligned Collagen Matrix as a Dermal Substitute
,”
MRS Adv.
,
1
(
18
), pp.
1295
1300
.10.1557/adv.2016.240
12.
Webster-Wood
,
V. A.
,
Akkus
,
O.
,
Gurkan
,
U. A.
,
Chiel
,
H. J.
, and
Quinn
,
R. D.
,
2017
, “
Organismal Engineering: Toward a Robotic Taxonomic Key for Devices Using Organic Materials
,”
Sci. Rob.
,
2
(
12
), p.
eaap9281
.10.1126/scirobotics.aap9281
13.
Takemura
,
R.
,
Hoshino
,
T.
,
Akiyama
,
Y.
, and
Morishima
,
K.
,
2010
, “
Design Analysis of Self-Organized and Frameless Swimming Bio-Robots With Cardiomyocyte Gel
,”
International Symposium on Micro-NanoMechatronics and Human Science
, Nagoya, Japan, Nov. 7–10, pp.
485
490
.10.1109/MHS.2010.5669567
14.
Webster
,
V. A.
,
Hawley
,
E. L.
,
Akkus
,
O.
,
Chiel
,
H. J.
, and
Quinn
,
R. D.
,
2016
, “
Effect of Actuating Cell Source on Locomotion of Organic Living Machines With Electrocompacted Collagen Skeleton
,”
Bioinspiration Biomimetics
,
11
(
3
), p. 036012.10.1088/1748-3190/11/3/036012
15.
Morimoto
,
Y.
,
Onoe
,
H.
, and
Takeuchi
,
S.
,
2020
, “
Biohybrid Robot With Skeletal Muscle Tissue Covered With a Collagen Structure for Moving in Air
,”
APL Bioeng.
,
4
(
2
), p.
026101
.10.1063/1.5127204
16.
Alfredo Uquillas
,
J.
,
Kishore
,
V.
, and
Akkus
,
O.
,
2012
, “
Genipin Crosslinking Elevates the Strength of Electrochemically Aligned Collagen to the Level of Tendons
,”
J. Mech. Behav. Biomed. Mater.
,
15
, pp.
176
189
.10.1016/j.jmbbm.2012.06.012
17.
Nguyen
,
T. U.
,
Shojaee
,
M.
,
Bashur
,
C. A.
, and
Kishore
,
V.
,
2018
, “
Electrochemical Fabrication of a Biomimetic Elastin-Containing Bi-Layered Scaffold for Vascular Tissue Engineering
,”
Biofabrication
,
11
(
1
), p.
015007
.10.1088/1758-5090/aaeab0
18.
Cheng
,
X.
,
Tsao
,
C.
,
Sylvia
,
V. L.
,
Cornet
,
D.
,
Nicolella
,
D. P.
,
Bredbenner
,
T. L.
, and
Christy
,
R. J.
,
2014
, “
Platelet-Derived Growth-Factor-Releasing Aligned Collagen-Nanoparticle Fibers Promote the Proliferation and Tenogenic Differentiation of Adipose-Derived Stem Cells
,”
Acta Biomater.
,
10
(
3
), pp.
1360
1369
.10.1016/j.actbio.2013.11.017
19.
Kang
,
L.
,
Liu
,
X.
,
Yue
,
Z.
,
Chen
,
Z.
,
Baker
,
C.
,
Winberg
,
P. C.
, and
Wallace
,
G. G.
,
2018
, “
Fabrication and In Vitro Characterization of Electrochemically Compacted Collagen/Sulfated Xylorhamnoglycuronan Matrix for Wound Healing Applications
,”
Polymers
,
10
(
4
), p.
415
.10.3390/polym10040415
20.
Edwards
,
N.
,
Feliers
,
D.
,
Zhao
,
Q.
,
Stone
,
R.
,
Christy
,
R.
, and
Cheng
,
X.
,
2018
, “
An Electrochemically Deposited Collagen Wound Matrix Combined With Adipose-Derived Stem Cells Improves Cutaneous Wound Healing in a Mouse Model of Type 2 Diabetes
,”
J. Biomater. Appl.
,
33
(
4
), pp.
553
565
.10.1177/0885328218803754
21.
Cheng
,
X.
,
Gurkan
,
U. A.
,
Dehen
,
C. J.
,
Tate
,
M. P.
,
Hillhouse
,
H. W.
,
Simpson
,
G. J.
, and
Akkus
,
O.
,
2008
, “
An Electrochemical Fabrication Process for the Assembly of Anisotropically Oriented Collagen Bundles
,”
Biomaterials
,
29
(
22
), pp.
3278
3288
.10.1016/j.biomaterials.2008.04.028
22.
Uquillas
,
J. A.
,
Kishore
,
V.
, and
Akkus
,
O.
,
2011
, “
Effects of Phosphate-Buffered Saline Concentration and Incubation Time on the Mechanical and Structural Properties of Electrochemically Aligned Collagen Threads
,”
Biomed. Mater.
,
6
(
3
), p.
035008
.10.1088/1748-6041/6/3/035008
23.
Huang
,
L. L.
,
Sung
,
H. W.
,
Tsai
,
C. C.
, and
Huang
,
D. M.
,
1998
, “
Biocompatibility Study of a Biological Tissue Fixed With a Naturally Occurring Crosslinking Reagent
,”
J. Biomed. Mater. Res.
,
42
(
4
), pp.
568
576
.10.1002/(SICI)1097-4636(19981215)42:4<568::AID-JBM13>3.0.CO;2-7
24.
Chapin
,
K.
,
Khalifa
,
A.
,
Mbimba
,
T.
,
McClellan
,
P.
,
Anderson
,
J.
,
Novitsky
,
Y.
,
Hijaz
,
A.
, and
Akkus
,
O.
,
2019
, “
In Vivo Biocompatibility and Time-Dependent Changes in Mechanical Properties of Woven Collagen Meshes: A Comparison to Xenograft and Synthetic Mid-Urethral Sling Materials
,”
J. Biomed. Mater. Res.-Part B
,
107
(
3
), pp.
479
489
.10.1002/jbm.b.34138
25.
Gurkan
,
U. A.
,
Cheng
,
X.
,
Kishore
,
V.
,
Uquillas
,
J. A.
, and
Akkus
,
O.
,
2010
, “
Comparison of Morphology, Orientation, and Migration of Tendon Derived Fibroblasts and Bone Marrow Stromal Cells on Electrochemically Aligned Collagen Constructs
,”
J. Biomed. Mater. Res.-Part A
,
94A
(
4
), pp.
1070
1079
.10.1002/jbm.a.32783
26.
Kishore
,
V.
,
Uquillas
,
J. A.
,
Dubikovsky
,
A.
,
Alshehabat
,
M. A.
,
Snyder
,
P. W.
,
Breur
,
G. J.
, and
Akkus
,
O.
,
2012
, “
In Vivo Response to Electrochemically Aligned Collagen Bioscaffolds
,”
J. Biomed. Mater. Res.-Part B
,
100B
(
2
), pp.
400
408
.10.1002/jbm.b.31962
27.
Uquillas
,
J. A.
, and
Akkus
,
O.
,
2012
, “
Modeling the Electromobility of Type-I Collagen Molecules in the Electrochemical Fabrication of Dense and Aligned Tissue Constructs
,”
Ann. Biomed. Eng.
, 40(8), pp.
1641
1653
.10.1007/s10439-012-0528-1
28.
Ramesh Kumar
,
M.
,
Merschrod S.
,
E. F.
, and
Poduska
,
K. M.
,
2009
, “
Correlating Mechanical Properties With Aggregation Processes in Electrochemically Fabricated Collagen Membranes
,”
Biomacromolecules
,
10
(
7
), pp.
1970
1975
.10.1021/bm900379g
29.
Sharma
,
R. I.
, and
Snedeker
,
J. G.
,
2010
, “
Biochemical and Biomechanical Gradients for Directed Bone Marrow Stromal Cell Differentiation Toward Tendon and Bone
,”
Biomaterials
,
31
(
30
), pp.
7695
7704
.10.1016/j.biomaterials.2010.06.046
30.
Jiang
,
A.
,
Xynogalas
,
G.
,
Dasgupta
,
P.
,
Althoefer
,
K.
, and
Nanayakkara
,
T.
,
2012
, “
Design of a Variable Stiffness Flexible Manipulator With Composite Granular Jamming and Membrane Coupling
,”
IEEE International Conference on Intelligent Robots and Systems
, Vilamoura-Algarve, Portugal, Oct. 7–12, pp.
2922
2927
.10.1109/IROS.2012.6385696
31.
Rueden
,
C. T.
,
Schindelin
,
J.
,
Hiner
,
M. C.
,
DeZonia
,
B. E.
,
Walter
,
A. E.
,
Arena
,
E. T.
, and
Eliceiri
,
K. W.
,
2017
, “
ImageJ2: ImageJ for the Next Generation of Scientific Image Data
,”
BMC Bioinf.
,
18
(
1
), pp.
1
26
.10.1186/s12859-017-1934-z
32.
Barnes
,
C. P.
,
Pemble
,
C. W.
, IV
,
Brand
,
D. D.
,
Simpson
,
D. G.
, and
Bowlin
,
G. L.
,
2007
, “
Cross-Linking Electrospun Type II Collagen Tissue Engineering Scaffolds With Carbodiimide in Ethanol
,”
Tissue Eng.
,
13
(
7
), pp.
1593
1605
.10.1089/ten.2006.0292
33.
Nagai
,
N.
,
Yunoki
,
S.
,
Suzuki
,
T.
,
Sakata
,
M.
,
Tajima
,
K.
, and
Munekata
,
M.
,
2004
, “
Application of Cross-Linked Salmon Atelocollagen to the Scaffold of Human Periodontal Ligament Cells
,”
J. Biosci. Bioeng.
,
97
(
6
), pp.
389
394
.10.1016/S1389-1723(04)70224-8
34.
Sheu
,
M. T.
,
Huang
,
J. C.
,
Yeh
,
G. C.
, and
Ho
,
H. O.
,
2001
, “
Characterization of Collagen Gel Solutions and Collagen Matrices for Cell Culture
,”
Biomaterials
,
22
(
13
), pp.
1713
1719
.10.1016/S0142-9612(00)00315-X
35.
Younesi
,
M.
,
Islam
,
A.
,
Kishore
,
V.
,
Panit
,
S.
, and
Akkus
,
O.
,
2015
, “
Fabrication of Compositionally and Topographically Complex Robust Tissue Forms by 3D-Electrochemical Compaction of Collagen
,”
Biofabrication
,
7
(
3
), p.
035001
.10.1088/1758-5090/7/3/035001
36.
Kishore
,
V.
,
Iyer
,
R.
,
Frandsen
,
A.
, and
Nguyen
,
T. U.
,
2016
, “
In Vitro Characterization of Electrochemically Compacted Collagen Matrices for Corneal Applications
,”
Biomed. Mater.
,
11
(
5
), p.
055008
.10.1088/1748-6041/11/5/055008
37.
Nguyen
,
T. U.
,
Bashur
,
C. A.
, and
Kishore
,
V.
,
2016
, “
Impact of Elastin Incorporation Into Electrochemically Aligned Collagen Fibers on Mechanical Properties and Smooth Muscle Cell Phenotype
,”
Biomed. Mater.
,
11
(
2
), p.
025008
.10.1088/1748-6041/11/2/025008
38.
Denning
,
D.
,
Abu-Rub
,
M. T.
,
Zeugolis
,
D. I.
,
Habelitz
,
S.
,
Pandit
,
A.
,
Fertala
,
A.
, and
Rodriguez
,
B. J.
,
2012
, “
Electromechanical Properties of Dried Tendon and Isoelectrically Focused Collagen Hydrogels
,”
Acta Biomater.
,
8
(
8
), pp.
3073
3079
.10.1016/j.actbio.2012.04.017
39.
Abu-Rub
,
M. T.
,
Billiar
,
K. L.
,
van Es
,
M. H.
,
Knight
,
A.
,
Rodriguez
,
B. J.
,
Zeugolis
,
D. I.
,
McMahon
,
S.
,
Windebank
,
A. J.
, and
Pandit
,
A.
,
2011
, “
Nano-Textured Self-Assembled Aligned Collagen Hydrogels Promote Directional Neurite Guidance and Overcome Inhibition by Myelin Associated Glycoprotein
,”
Soft Matter
,
7
(
6
), pp.
2770
2781
.10.1039/c0sm01062f
40.
Cook
,
D. D.
,
De La Chapelle
,
W.
,
Lin
,
T. C.
,
Lee
,
S. Y.
,
Sun
,
W.
, and
Robertson
,
D. J.
,
2019
, “
DARLING: A Device for Assessing Resistance to Lodging in Grain Crops
,”
Plant Methods
,
15
(
1
), pp.
1
8
.10.1186/s13007-019-0488-7
41.
Robertson
,
D. J.
,
Lee
,
S. Y.
,
Julias
,
M.
, and
Cook
,
D. D.
,
2016
, “
Maize Stalk Lodging: Flexural Stiffness Predicts Strength
,”
Crop Sci.
,
56
(
4
), pp.
1711
1718
.10.2135/cropsci2015.11.0665
42.
Awad
,
H. A.
,
Boivin
,
G. P.
,
Dressler
,
M. R.
,
Smith
,
F. N.
,
Young
,
R. G.
, and
Butler
,
D. L.
,
2003
, “
Repair of Patellar Tendon Injuries Using a Cell-Collagen Composite
,”
J. Orthop. Res.
,
21
(
3
), pp.
420
431
.10.1016/S0736-0266(02)00163-8
43.
Pins
,
G. D.
,
Christiansen
,
D. L.
,
Patel
,
R.
, and
Silver
,
F. H.
,
1997
, “
Self-Assembly of Collagen Fibers. Influence of Fibrillar Alignment and Decorin on Mechanical Properties
,”
Biophys. J.
,
73
(
4
), pp.
2164
2172
.10.1016/S0006-3495(97)78247-X
44.
Srinivasan
,
A.
, and
Sehgal
,
P. K.
,
2010
, “
Characterization of Biocompatible Collagen Fibers-a Promising Candidate for Cardiac Patch
,”
Tissue Eng.-Part C
,
16
(
5
), pp.
895
903
.10.1089/ten.tec.2009.0475
45.
Tohyama
,
H.
, and
Yasuda
,
K.
,
2000
, “
Extrinsic Cell Infiltration and Revascularization Accelerate Mechanical Deterioration of the Patellar Tendon After Fibroblast Necrosis
,”
ASME J. Biomech. Eng.
,
122
(
6
), pp.
594
599
.10.1115/1.1319659
46.
Kongsgaard
,
M.
,
Nielsen
,
C. H.
,
Hegnsvad
,
S.
,
Aagaard
,
P.
, and
Magnusson
,
S. P.
,
2011
, “
Mechanical Properties of the Human Achilles Tendon, In Vivo
,”
Clin. Biomech.
,
26
(
7
), pp.
772
777
.10.1016/j.clinbiomech.2011.02.011
47.
Nijsure
,
M. P.
,
Pastakia
,
M.
,
Spano
,
J.
,
Fenn
,
M. B.
, and
Kishore
,
V.
,
2017
, “
Bioglass Incorporation Improves Mechanical Properties and Enhances Cell-Mediated Mineralization on Electrochemically Aligned Collagen Threads
,”
J. Biomed. Mater. Res.-Part A
,
105
(
9
), pp.
2429
2440
.10.1002/jbm.a.36102
48.
Kishore
,
V.
,
Paderi
,
J. E.
,
Akkus
,
A.
,
Smith
,
K. M.
,
Balachandran
,
D.
,
Beaudoin
,
S.
,
Panitch
,
A.
, and
Akkus
,
O.
,
2011
, “
Incorporation of a Decorin Biomimetic Enhances the Mechanical Properties of Electrochemically Aligned Collagen Threads
,”
Acta Biomater.
,
7
(
6
), pp.
2428
2436
.10.1016/j.actbio.2011.02.035
You do not currently have access to this content.