Abstract

Gait modifications are effective in reducing the first peak knee abduction moment (PKAM), a surrogate for knee loading. Reliance on 3D motion capture currently restricts these modifications to the laboratory. Therefore, our purpose was to test the feasibility of a novel wearable biofeedback system to train (1) toe-in and trunk lean modifications and (2) combined toe-in and trunk lean modifications to reduce PKAM during overground walking outside of the laboratory. Twelve healthy participants practiced modifications in a university hallway directly after performing five normal walking trials. The wearable feedback system provided real-time haptic biofeedback during training trials to inform participants if they were within the prescribed modification range (7–12 deg greater than baseline). Participants were instructed to move to the next modification only once they felt comfortable and could perform it with minimal errors. Following training, five trials of each modification were immediately performed in the gait laboratory without feedback. All participants successfully modified their foot progression and trunk angle using the wearable system. At post-test, PKAM decreased from baseline by 62%, 55%, and 28% during combined, trunk leanand toe-in gait, respectively. The wearable feedback system was effective to modify participants' foot and trunk angle by the prescribed amount, resulting in reduced PKAM during all modifications at post-test. Participants were also able to perform a combined modification, although it took longer to report feeling comfortable doing so. This study demonstrates that a wearable feedback system is feasible to modify kinematic parameters and train gait modifications outside the laboratory.

References

1.
Cross
,
M.
,
Smith
,
E.
,
Hoy
,
D.
,
Nolte
,
S.
,
Ackerman
,
I.
,
Fransen
,
M.
,
Bridgett
,
L.
,
Williams
,
S.
,
Guillemin
,
F.
,
Hill
,
C. L.
,
Laslett
,
L. L.
,
Jones
,
G.
,
Cicuttini
,
F.
,
Osborne
,
R.
,
Vos
,
T.
,
Buchbinder
,
R.
,
Woolf
,
A.
, and
March
,
L.
,
2014
, “
The Global Burden of Hip and Knee Osteoarthritis: Estimates From the Global Burden of Disease 2010 Study
,”
Ann. Rheum. Dis.
,
73
(
7
), pp.
1323
1330
.10.1136/annrheumdis-2013-204763
2.
Sharma
,
L.
,
Hurwitz
,
D. E.
,
Thonar
,
E. J.
,
Sum
,
J. A.
,
Lenz
,
M. E.
,
Dunlop
,
D. D.
,
Schnitzer
,
T. J.
,
Kirwan-Mellis
,
G.
, and
Andriacchi
,
T. P.
,
1998
, “
Knee Adduction Moment, Serum Hyaluronan Level, and Disease Severity in Medial Tibiofemoral Osteoarthritis
,”
Arthritis Rheumatol.
,
41
(
7
), pp.
1233
1240
.10.1002/1529-0131(199807)41:7<1233::AID-ART14>3.0.CO;2-L
3.
Amin
,
S.
,
Luepongsak
,
N.
,
McGibbon
,
C. A.
,
LaValley
,
M. P.
,
Krebs
,
D. E.
, and
Felson
,
D. T.
,
2004
, “
Knee Adduction Moment and Development of Chronic Knee Pain in Elders
,”
Arthritis Care Res.
,
51
(
3
), pp.
371
376
.10.1002/art.20396
4.
Miyazaki
,
T.
,
Wada
,
M.
,
Kawahara
,
H.
,
Sato
,
M.
,
Baba
,
H.
, and
Shimada
,
S.
,
2002
, “
Dynamic Load at Baseline Can Predict Radiographic Disease Progression in Medial Compartment Knee Osteoarthritis
,”
Ann. Rheum. Dis.
,
61
(
7
), pp.
617
622
.10.1136/ard.61.7.617
5.
Simic
,
M.
,
Hinman
,
R. S.
,
Wrigley
,
T. V.
,
Bennell
,
K. L.
, and
Hunt
,
M. A.
,
2010
, “
Gait Modification Strategies for Altering Medial Knee Joint Load: A Systematic Review
,”
Arthritis Care Res.
,
63
(
3
), pp.
405
426
.10.1002/acr.20380
6.
Eddo
,
O.
,
Lindsey
,
B.
,
Caswell
,
S. V.
, and
Cortes
,
N.
,
2017
, “
Current Evidence of Gait Modification With Real-Time Biofeedback to Alter Kinetic, Temporospatial, and Function-Related Outcomes: A Review
,”
Int. J. Kinesiology Sports Sci.
,
5
(
3
), pp.
35
55
.10.7575/aiac.ijkss.v.5n.3p.35
7.
Richards
,
R.
,
van den Noort
,
J.
,
Dekker
,
J.
, and
Harlaar
,
J.
,
2016
, “
Effects of Gait Retraining With Real-Time Biofeedback in Patients With Knee Osteoarthritis: Systematic Review and Meta-Analysis
,”
Osteoarthritis Cartilage
,
24
, pp.
S470
S471
.10.1016/j.joca.2016.01.858
8.
Gerbrands
,
T.
,
Pisters
,
M.
, and
Vanwanseele
,
B.
,
2014
, “
Individual Selection of Gait Retraining Strategies is Essential to Optimally Reduce Medial Knee Load During Gait
,”
Clin. Biomech.
,
29
(
7
), pp.
828
834
.10.1016/j.clinbiomech.2014.05.005
9.
Hunt
,
M. A.
,
Simic
,
M.
,
Hinman
,
R. S.
,
Bennell
,
K. L.
, and
Wrigley
,
T. V.
,
2011
, “
Feasibility of a Gait Retraining Strategy for Reducing Knee Joint Loading: Increased Trunk Lean Guided by Real-Time Biofeedback
,”
J. Biomech.
,
44
(
5
), pp.
943
947
.10.1016/j.jbiomech.2010.11.027
10.
Shull
,
P. B.
,
Lurie
,
K. L.
,
Cutkosky
,
M. R.
, and
Besier
,
T. F.
,
2011
, “
Training Multi-Parameter Gaits to Reduce the Knee Adduction Moment With Data-Driven Models and Haptic Feedback
,”
J. Biomech.
,
44
(
8
), pp.
1605
1609
.10.1016/j.jbiomech.2011.03.016
11.
Simic
,
M.
,
Hunt
,
M. A.
,
Bennell
,
K. L.
,
Hinman
,
R. S.
, and
Wrigley
,
T. V.
,
2012
, “
Trunk Lean Gait Modification and Knee Joint Load in People With Medial Knee Osteoarthritis: The Effect of Varying Trunk Lean Angles
,”
Arthritis Care Res.
,
64
(
10
), pp.
1545
1553
.10.1002/acr.21724
12.
Tokuda
,
K.
,
Anan
,
M.
,
Takahashi
,
M.
,
Sawada
,
T.
,
Tanimoto
,
K.
,
Kito
,
N.
, and
Shinkoda
,
K.
,
2018
, “
Biomechanical Mechanism of Lateral Trunk Lean Gait for Knee Osteoarthritis Patients
,”
J. Biomech.
,
66
, pp.
10
17
.10.1016/j.jbiomech.2017.10.016
13.
Lindsey
,
B.
,
Eddo
,
O.
,
Caswell
,
S. V.
, and
Cortes
,
N.
,
2019
, “
Reductions in Peak Knee Abduction Moment in Three Previously Studied Gait Modification Strategies
,”
Knee
,
27
(
1
), pp.
102
110
.10.1016/j.knee.2019.09.017
14.
Nüesch
,
C.
,
Laffer
,
D.
,
Netzer
,
C.
,
Pagenstert
,
G.
, and
Mündermann
,
A.
,
2016
, “
Effect of Gait Retraining for Reducing Ambulatory Knee Load on Trunk Biomechanics and Trunk Muscle Activity
,”
Gait Posture
,
47
, pp.
24
30
.10.1016/j.gaitpost.2016.03.019
15.
Shull
,
P. B.
,
Shultz
,
R.
,
Silder
,
A.
,
Dragoo
,
J. L.
,
Besier
,
T. F.
,
Cutkosky
,
M. R.
, and
Delp
,
S. L.
,
2013
, “
Toe-in Gait Reduces the First Peak Knee Adduction Moment in Patients With Medial Compartment Knee Osteoarthritis
,”
J. Biomech.
,
46
(
1
), pp.
122
128
.10.1016/j.jbiomech.2012.10.019
16.
Shull
,
P. B.
,
Silder
,
A.
,
Shultz
,
R.
,
Dragoo
,
J. L.
,
Besier
,
T. F.
,
Delp
,
S. L.
, and
Cutkosky
,
M. R.
,
2013
, “
Six-Week Gait Retraining Program Reduces Knee Adduction Moment, Reduces Pain, and Improves Function for Individuals With Medial Compartment Knee Osteoarthritis
,”
J. Orthop. Res.
,
31
(
7
), pp.
1020
1025
.10.1002/jor.22340
17.
Simic
,
M.
,
Wrigley
,
T.
,
Hinman
,
R.
,
Hunt
,
M.
, and
Bennell
,
K.
,
2013
, “
Altering Foot Progression Angle in People With Medial Knee Osteoarthritis: The Effects of Varying Toe-in and Toe-Out Angles Are Mediated by Pain and Malalignment
,”
Osteoarthritis Cartilage
,
21
(
9
), pp.
1272
1280
.10.1016/j.joca.2013.06.001
18.
Uhlrich
,
S. D.
,
Silder
,
A.
,
Beaupre
,
G. S.
,
Shull
,
P. B.
, and
Delp
,
S. L.
,
2018
, “
Subject-Specific Toe-in or Toe-Out Gait Modifications Reduce the Larger Knee Adduction Moment Peak More Than a Non-Personalized Approach
,”
J. Biomech.
,
66
, pp.
103
110
.10.1016/j.jbiomech.2017.11.003
19.
Bennour
,
S.
,
Ulrich
,
B.
,
Legrand
,
T.
,
Jolles
,
B.
, and
Favre
,
J.
,
2017
, “
Effects of Foot Progression Angle on Knee Biomechanics During Gait Modification
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
Suppl. 1
), pp.
17
18
.10.1080/10255842.2017.1382839
20.
Guo
,
M.
,
Axe
,
M. J.
, and
Manal
,
K.
,
2007
, “
The Influence of Foot Progression Angle on the Knee Adduction Moment During Walking and Stair Climbing in Pain Free Individuals With Knee Osteoarthritis
,”
Gait Posture
,
26
(
3
), pp.
436
441
.10.1016/j.gaitpost.2006.10.008
21.
Jenkyn
,
T. R.
,
Hunt
,
M. A.
,
Jones
,
I. C.
,
Giffin
,
J. R.
, and
Birmingham
,
T. B.
,
2008
, “
Toe-Out Gait in Patients With Knee Osteoarthritis Partially Transforms External Knee Adduction Moment Into Flexion Moment During Early Stance Phase of Gait: A Tri-Planar Kinetic Mechanism
,”
J. Biomech.
,
41
(
2
), pp.
276
283
.10.1016/j.jbiomech.2007.09.015
22.
Shull
,
P.
,
Lurie
,
K.
,
Shin
,
M.
,
Besier
,
T.
, and
Cutkosky
,
M.
,
2010
, “
Haptic Gait Retraining for Knee Osteoarthritis Treatment
,”
IEEE Haptics Symposium
,
Waltham, MA
, Mar. 25-26, pp.
409
416
.10.1109/HAPTIC.2010.5444625
23.
Favre
,
J.
,
Erhart‐Hledik
,
J. C.
,
Chehab
,
E. F.
, and
Andriacchi
,
T. P.
,
2016
, “
General Scheme to Reduce the Knee Adduction Moment by Modifying a Combination of Gait Variables
,”
J. Orthop. Res.
,
34
(
9
), pp.
1547
1556
.10.1002/jor.23151
24.
Lurie
,
K. L.
,
Shull
,
P. B.
,
Nesbitt
,
K. F.
, and
Cutkosky
,
M. R.
,
2011
, “
Informing Haptic Feedback Design for Gait Retraining
,”
IEEE World Haptics Conference
,
Istanbul, Turkey
, June 21-24, pp.
19
24
.10.1109/WHC.2011.5945455
25.
Xu
,
J.
,
Bao
,
T.
,
Lee
,
U. H.
,
Kinnaird
,
C.
,
Carender
,
W.
,
Huang
,
Y.
,
Sienko
,
K. H.
, and
Shull
,
P. B.
,
2017
, “
Configurable, Wearable Sensing and Vibrotactile Feedback System for Real-Time Postural Balance and Gait Training: Proof-of-Concept
,”
J. Neuroeng. Rehabil.
,
14
(
1
), p.
102
.10.1186/s12984-017-0313-3
26.
Cortes
,
N.
,
Quammen
,
D.
,
Lucci
,
S.
,
Greska
,
E.
, and
Onate
,
J.
,
2012
, “
A Functional Agility Short-Term Fatigue Protocol Changes Lower Extremity Mechanics
,”
J. Sports Sci.
,
30
(
8
), pp.
797
805
.10.1080/02640414.2012.671528
27.
Eddo
,
O.
,
Lindsey
,
B.
,
Caswell
,
S. V.
,
Prebble
,
M.
, and
Cortes
,
N.
,
2019
, “
Unintended Changes in Contralateral Limb as a Result of Acute Gait Modification
,”
J. Appl. Biomech.
,
36
(
1
), pp.
13
19
.10.1123/jab.2019-0031
28.
Kettlety
,
S.
,
Lindsey
,
B.
,
Eddo
,
O.
,
Prebble
,
M.
,
Caswell
,
S.
, and
Cortes
,
N.
,
2020
, “
Changes in Hip Mechanics During Gait Modification to Reduce Knee Abduction Moment
,”
J. Biomech.
,
99
, p.
109509
.10.1016/j.jbiomech.2019.109509
29.
Schwartz
,
M. H.
, and
Rozumalski
,
A.
,
2005
, “
A New Method for Estimating Joint Parameters From Motion Data
,”
J. Biomech.
,
38
(
1
), pp.
107
116
.10.1016/j.jbiomech.2004.03.009
30.
Gerbrands
,
T. A.
,
Pisters
,
M.
,
Theeven
,
P.
,
Verschueren
,
S.
, and
Vanwanseele
,
B.
,
2017
, “
Lateral Trunk Lean and Medializing the Knee as Gait Strategies for Knee Osteoarthritis
,”
Gait Posture
,
51
, pp.
247
253
.10.1016/j.gaitpost.2016.11.014
31.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.10.1115/1.3138397
32.
Butler
,
R. J.
,
Minick
,
K. I.
,
Ferber
,
R.
, and
Underwood
,
F.
,
2009
, “
Gait Mechanics After ACL Reconstruction: Implications for the Early Onset of Knee Osteoarthritis
,”
Br. J. Sports Med.
,
43
(
5
), pp.
366
370
.10.1136/bjsm.2008.052522
33.
Winter
,
D. A.
,
2009
,
Biomechanics and Motor Control of Human Movement
,
Wiley
,
Hoboken, NJ
.
34.
RCore
,
T.
,
2016
, “
R: A Language and Environment for Statistical Computing
,”
R Foundation for Statistical Computing
,
Vienna, Austria
, accessed Aug. 21, 2020, http://www.R-project.org
35.
Wheeler
,
J. W.
,
Shull
,
P. B.
, and
Besier
,
T. F.
,
2011
, “
Real-Time Knee Adduction Moment Feedback for Gait Retraining Through Visual and Tactile Displays
,”
ASME J. Biomech. Eng.
,
133
(
4
), p.
041007
.10.1115/1.4003621
36.
Mündermann
,
A.
,
Asay
,
J. L.
,
Mündermann
,
L.
, and
Andriacchi
,
T. P.
,
2008
, “
Implications of Increased Medio-Lateral Trunk Sway for Ambulatory Mechanics
,”
J. Biomech.
,
41
(
1
), pp.
165
170
.10.1016/j.jbiomech.2007.07.001
37.
Hunt
,
M.
,
Birmingham
,
T.
,
Bryant
,
D.
,
Jones
,
I.
,
Giffin
,
J.
,
Jenkyn
,
T.
, and
Vandervoort
,
A.
,
2008
, “
Lateral Trunk Lean Explains Variation in Dynamic Knee Joint Load in Patients With Medial Compartment Knee Osteoarthritis
,”
Osteoarthritis Cartilage
,
16
(
5
), pp.
591
599
.10.1016/j.joca.2007.10.017
You do not currently have access to this content.