Abstract

Standing balance is a simple motion task for healthy humans but the actions of the central nervous system (CNS) have not been described by generalized and sufficiently sophisticated control laws. While system identification approaches have been used to extracted models of the CNS, they either focus on short balance motions, leading to task-specific control laws, or assume that the standing balance system is linear. To obtain comprehensive control laws for human standing balance, complex balance motions, long duration tests, and nonlinear controller models are all needed. In this paper, we demonstrate that trajectory optimization with the direct collocation method can achieve these goals to identify complex CNS models for the human standing balance task. We first examined this identification method using synthetic motion data and showed that correct control parameters can be extracted. Then, six types of controllers, from simple linear to complex nonlinear, were identified from 100 s of motion data from randomly perturbed standing. Results showed that multiple time-delay paths and nonlinear properties are both needed in order to fully explain human feedback control of standing balance.

References

1.
Kuo
,
A. D.
,
1995
, “
An Optimal Control Model for Analyzing Human Postural Balance
,”
IEEE Trans. Biomed. Eng.
,
42
(
1
), pp.
87
101
.10.1109/10.362914
2.
Oie
,
K. S.
,
Kiemel
,
T.
, and
Jeka
,
J. J.
,
2002
, “
Multisensory Fusion: Simultaneous Re-Weighting of Vision and Touch for the Control of Human Posture
,”
Cognit. Brain Res.
,
14
(
1
), pp.
164
176
.10.1016/S0926-6410(02)00071-X
3.
Peterka
,
R.
,
2002
, “
Sensorimotor Integration in Human Postural Control
,”
J. Neurophysiol.
,
88
(
3
), pp.
1097
1118
.10.1152/jn.2002.88.3.1097
4.
Park
,
S.
,
Horak
,
F. B.
, and
Kuo
,
A. D.
,
2004
, “
Postural Feedback Responses Scale With Biomechanical Constraints in Human Standing
,”
Exp. Brain Res.
,
154
(
4
), pp.
417
427
.10.1007/s00221-003-1674-3
5.
Alexandrov
,
A. V.
,
Frolov
,
A. A.
,
Horak
,
F.
,
Carlson-Kuhta
,
P.
, and
Park
,
S.
,
2005
, “
Feedback Equilibrium Control During Human Standing
,”
Biol. Cybern.
,
93
(
5
), pp.
309
322
.10.1007/s00422-005-0004-1
6.
Maurer
,
C.
,
Mergner
,
T.
, and
Peterka
,
R.
,
2006
, “
Multisensory Control of Human Upright Stance
,”
Exp. Brain Res.
,
171
(
2
), pp.
231
250
.10.1007/s00221-005-0256-y
7.
Torres-Oviedo
,
G.
, and
Ting
,
L. H.
,
2007
, “
Muscle Synergies Characterizing Human Postural Responses
,”
J. Neurophysiol.
,
98
(
4
), pp.
2144
2156
.10.1152/jn.01360.2006
8.
Kiemel
,
T.
,
Elahi
,
A. J.
, and
Jeka
,
J. J.
,
2008
, “
Identification of the Plant for Upright Stance in Humans: Multiple Movement Patterns From a Single Neural Strategy
,”
J. Neurophysiol.
,
100
(
6
), pp.
3394
3406
.10.1152/jn.01272.2007
9.
Mergner
,
T.
,
2010
, “
A Neurological View on Reactive Human Stance Control
,”
Annu. Rev. Control
,
34
(
2
), pp.
177
198
.10.1016/j.arcontrol.2010.08.001
10.
Bingham
,
J. T.
,
Choi
,
J. T.
, and
Ting
,
L. H.
,
2011
, “
Stability in a Frontal Plane Model of Balance Requires Coupled Changes to Postural Configuration and Neural Feedback Control
,”
J. Neurophysiol.
,
106
(
1
), pp.
437
448
.10.1152/jn.00010.2011
11.
Goodworth
,
A. D.
, and
Peterka
,
R. J.
,
2012
, “
Sensorimotor Integration for Multisegmental Frontal Plane Balance Control in Humans
,”
J. Neurophysiol.
,
107
(
1
), pp.
12
28
.10.1152/jn.00670.2010
12.
Boonstra
,
T. A.
,
Schouten
,
A. C.
, and
Van der Kooij
,
H.
,
2013
, “
Identification of the Contribution of the Ankle and Hip Joints to Multi-Segmental Balance Control
,”
J. Neuroeng. Rehabil.
,
10
(
1
), p.
23
.10.1186/1743-0003-10-23
13.
Engelhart
,
D.
,
Schouten
,
A. C.
,
Aarts
,
R. G.
, and
van der Kooij
,
H.
,
2015
, “
Assessment of Multi-Joint Coordination and Adaptation in Standing Balance: A Novel Device and System Identification Technique
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
6
), pp.
973
982
.10.1109/TNSRE.2014.2372172
14.
van der Kooij
,
H.
,
van Asseldonk
,
E.
, and
van der Helm
,
F. C.
,
2005
, “
Comparison of Different Methods to Identify and Quantify Balance Control
,”
J. Neurosci. Methods
,
145
(
1–2
), pp.
175
203
.10.1016/j.jneumeth.2005.01.003
15.
Engelhart
,
D.
,
Boonstra
,
T. A.
,
Aarts
,
R. G.
,
Schouten
,
A. C.
, and
van der Kooij
,
H.
,
2016
, “
Comparison of Closed-Loop System Identification Techniques to Quantify Multi-Joint Human Balance Control
,”
Annu. Rev. Control
,
41
, pp.
58
70
.10.1016/j.arcontrol.2016.04.010
16.
Van Der Kooij
,
H.
, and
Peterka
,
R. J.
,
2011
, “
Non-Linear Stimulus-Response Behavior of the Human Stance Control System is Predicted by Optimization of a System With Sensory and Motor Noise
,”
J. Comput. Neurosci.
,
30
(
3
), pp.
759
778
.10.1007/s10827-010-0291-y
17.
Van Der Kooij
,
H.
, and
De Vlugt
,
E.
,
2007
, “
Postural Responses Evoked by Platform Pertubations Are Dominated by Continuous Feedback
,”
J. Neurophysiol.
,
98
(
2
), pp.
730
743
.10.1152/jn.00457.2006
18.
Pasma
,
J. H.
,
Engelhart
,
D.
,
Maier
,
A. B.
,
Aarts
,
R. G.
,
Van Gerven
,
J. M.
,
Arendzen
,
J. H.
,
Schouten
,
A. C.
,
Meskers
,
C. G.
, and
van der Kooij
,
H.
,
2016
, “
Reliability of System Identification Techniques to Assess Standing Balance in Healthy Elderly
,”
PLoS One
,
11
(
3
), p.
e0151012
.10.1371/journal.pone.0151012
19.
Pasma
,
J. H.
,
Engelhart
,
D.
,
Maier
,
A. B.
,
Schouten
,
A. C.
,
van der Kooij
,
H.
, and
Meskers
,
C. G.
,
2015
, “
Changes in Sensory Reweighting of Proprioceptive Information During Standing Balance With Age and Disease
,”
J. Neurophysiol.
,
114
(
6
), pp.
3220
3233
.10.1152/jn.00414.2015
20.
Pasma
,
J. H.
,
Engelhart
,
D.
,
Maier
,
A. B.
,
Meskers
,
C. G.
,
Aarts
,
R. G.
,
Schouten
,
A. C.
, and
van der Kooij
,
H.
,
2015
, “
Assessing Standing Balance Using Mimo Closed Loop System Identification Techniques
,”
IFAC-PapersOnLine
,
48
(
28
), pp.
1381
1385
.10.1016/j.ifacol.2015.12.325
21.
Pintelon
,
R.
, and
Schoukens
,
J.
,
2012
,
System Identification: A Frequency Domain Approach
,
Wiley
,
New York
.
22.
Goodworth
,
A. D.
, and
Peterka
,
R. J.
,
2018
, “
Identifying Mechanisms of Stance Control: A Single Stimulus Multiple Output Model-Fit Approach
,”
J. Neurosci. Methods
,
296
, pp.
44
56
.10.1016/j.jneumeth.2017.12.015
23.
Torres-Oviedo
,
G.
, and
Ting
,
L. H.
,
2010
, “
Subject-Specific Muscle Synergies in Human Balance Control Are Consistent Across Different Biomechanical Contexts
,”
J. Neurophysiol.
,
103
(
6
), pp.
3084
3098
.10.1152/jn.00960.2009
24.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
,
2007
,
Numerical Recipes 3rd Edition: The Art of Scientific Computing
,
Cambridge University Press
,
Cambridge, England
.
25.
Vyasarayani
,
C. P.
,
Uchida
,
T.
,
Carvalho
,
A.
, and
McPhee
,
J.
,
2011
, “
Parameter Identification in Dynamic Systems Using the Homotopy Optimization Approach
,”
Multibody Syst. Dyn.
,
26
(
4
), pp.
411
424
.10.1007/s11044-011-9260-0
26.
Ackermann
,
M.
, and
van den Bogert
,
A. J.
,
2010
, “
Optimality Principles for Model-Based Prediction of Human Gait
,”
J. Biomech.
,
43
(
6
), pp.
1055
1060
.10.1016/j.jbiomech.2009.12.012
27.
Koelewijn
,
A. D.
, and
van den Bogert
,
A. J.
,
2016
, “
Joint Contact Forces Can Be Reduced by Improving Joint Moment Symmetry in Below-Knee Amputee Gait Simulations
,”
Gait Posture
,
49
, pp.
219
225
.10.1016/j.gaitpost.2016.07.007
28.
Dembia
,
C. L.
,
Bianco
,
N. A.
,
Falisse
,
A.
,
Hicks
,
J. L.
, and
Delp
,
S. L.
,
2019
, “
Opensim Moco: Musculoskeletal Optimal Control
,”
BioRxiv
.10.1101/839381
29.
Horak
,
F. B.
,
1987
, “
Clinical Measurement of Postural Control in Adults
,”
Phys. Therapy
,
67
(
12
), pp.
1881
1885
.10.1093/ptj/67.12.1881
30.
Moore
,
J.
, and
van den Begert
,
A.
,
2015
, “
Human Standing Controller Parameter Identification With Direct Collocation
,”
15th International Symposium on Computer Simulation in Biomechanics (ISB)
, Edinburgh, UK, July 9–11.
31.
Koelewijn
,
A. D.
,
Heinrich
,
D.
, and
van den Bogert
,
A. J.
,
2019
, “
Metabolic Cost Calculations of Gait Using Musculoskeletal Energy Models, a Comparison Study
,”
PLoS One
,
14
(
9
), p.
e0222037
.10.1371/journal.pone.0222037
32.
Winter
,
D. A.
,
2009
,
Biomechanics and Motor Control of Human Movement
,
Wiley
,
New York
.
33.
Wang
,
H.
, and
van den Bogert
,
A.
,
2020
, “
Standing Balance Experiment With Long Duration Random Pulses Perturbation
,”
Zenodo
.10.5281/zenodo.3631958
34.
Crank
,
J.
, and
Nicolson
,
P.
,
1947
, “
A Practical Method for Numerical Evaluation of Solutions of Partial Differential Equations of the Heat-Conduction Type
,”
Adv. Comput. Math.
,
6
, pp.
207
226
.
35.
Hagan
,
M. T.
,
Demuth
,
H. B.
, and
Beale
,
M.
,
1996
,
Neural Network Design
,
PWS Publishing
,
Boston, MA
.
36.
Hargraves
,
C. R.
, and
Paris
,
S. W.
,
1987
, “
Direct Trajectory Optimization Using Nonlinear Programming and Collocation
,”
J. Guid., Control, Dyn.
,
10
(
4
), pp.
338
342
.10.2514/3.20223
37.
Kelly
,
M.
,
2017
, “
An Introduction to Trajectory Optimization: How to Do Your Own Direct Collocation
,”
SIAM Rev.
,
59
(
4
), pp.
849
904
.10.1137/16M1062569
38.
Betts
,
J. T.
,
1998
, “
Survey of Numerical Methods for Trajectory Optimization
,”
J. Guid., Control, Dyn.
,
21
(
2
), pp.
193
207
.10.2514/2.4231
39.
Wächter
,
A.
, and
Biegler
,
L. T.
,
2006
, “
On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming
,”
Math. Program.
,
106
(
1
), pp.
25
57
.10.1007/s10107-004-0559-y
40.
Ohio Supercomputer Center,
1987
, “Ohio Supercomputer Center,” Ohio Supercomputer Center, Columbus, OH, http://osc.edu/ark:/19495/f5s1ph73
41.
Wang
,
H.
, and
van den Bogert
,
A. J.
,
2020
, “
Identification of the Human Postural Control System Through Stochastic Trajectory Optimization
,”
J. Neurosci. Methods
,
334
, p.
108580
.10.1016/j.jneumeth.2020.108580
42.
Fryar
,
C. D.
,
Kruszan-Moran
,
D.
,
Gu
,
Q.
, and
Ogden
,
C. L.
,
2018
, “
Mean Body Weight, Weight, Waist Circumference, and Body Mass Index Among Adults: United States, 1999–2000 Through 2015–2016
,” National Health Statistics Reports, No. 122.
43.
Schut
,
I.
,
Pasma
,
J.
,
Mestdagh
,
J. D. V.
,
Van Der Kooij
,
H.
, and
Schouten
,
A.
,
2019
, “
Effect of Amplitude and Number of Repetitions of the Perturbation on System Identification of Human Balance Control During Stance
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
27
(
12
), pp.
2336
2343
.10.1109/TNSRE.2019.2943206
44.
Welch
,
T. D.
, and
Ting
,
L. H.
,
2009
, “
A Feedback Model Explains the Differential Scaling of Human Postural Responses to Perturbation Acceleration and Velocity
,”
J. Neurophysiol.
,
101
(
6
), pp.
3294
3309
.10.1152/jn.90775.2008
You do not currently have access to this content.