Abstract

Ventricle dysfunction is the most common cause of heart failure, which leads to high mortality and morbidity. The mechanical behavior of the ventricle is critical to its physiological function. It is known that the ventricle is anisotropic and viscoelastic. However, the understanding of ventricular viscoelasticity is much less than that of its elasticity. Moreover, the left and right ventricles (LV&RV) are different in embryologic origin, anatomy, and function, but whether they distinguish in viscoelastic properties is unclear. We hypothesized that passive viscoelasticity is different between healthy LVs and RVs. Ex vivo cyclic biaxial tensile mechanical tests (1, 0.1, 0.01 Hz) and stress relaxation (strain of 3, 6, 9, 12, 15%) were performed for ventricles from healthy adult sheep. Outflow track direction was defined as the longitudinal direction. Hysteresis stress–strain loops and stress relaxation curves were obtained to quantify the viscoelastic properties. We found that the RV had more pronounced frequency-dependent viscoelastic changes than the LV. Under the physiological frequency (1 Hz), the LV was more anisotropic in the elasticity and stiffer than the RV in both directions, whereas the RV was more anisotropic in the viscosity and more viscous than the LV in the longitudinal direction. The LV was quasi-linear viscoelastic in the longitudinal but not circumferential direction, and the RV was nonlinear viscoelastic in both directions. This study is the first to investigate passive viscoelastic differences in healthy LVs and RVs, and the findings will deepen the understanding of biomechanical mechanisms of ventricular function.

References

1.
Rosamond
,
W.
,
Flegal
,
K.
,
Furie
,
K.
,
Go
,
A.
,
Greenlund
,
K.
,
Haase
,
N.
,
Hailpern
,
S. M.
,
Ho
,
M.
,
Howard
,
V.
,
Kissela
,
B.
,
Kittner
,
S.
,
Lloyd-Jones
,
D.
,
McDermott
,
M.
,
Meigs
,
J.
,
Moy
,
C.
,
Nichol
,
G.
,
O'Donnell
,
C.
,
Roger
,
V.
,
Sorlie
,
P.
,
Steinberger
,
J.
,
Thom
,
T.
,
Wilson
,
M.
, and
Hong
,
Y.
,
Writing Group Members,
2008
, “
Heart Disease and Stroke Statistics—2008 Update
,”
Circulation
,
117
(
4
), pp.
e25
e146
.10.1161/CIRCULATIONAHA.107.187998
2.
Schocken, D. D., Benjamin, E. J., Fonarow, G. C., Krumholz, H. M., Levy, D., Mensah, G. A., Narula, J., Shor, E. S., Young, J. B., and Hong, Y., 2008, “Prevention of Heart Failure: A Scientific Statement from the American Heart Association Councils on Epidemiology and Prevention, Clinical Cardiology, Cardiovascular Nursing, and High Blood Pressure Research; Quality of Care and Outcomes Research Interdisciplinary Working Group; and Functional Genomics and Translational Biology Interdisciplinary Working Group,”
Circulation
,
117
(
19
), pp.
2544
2565
.10.1161/CIRCULATIONAHA.107.188965
3.
Jang
,
S.
,
Vanderpool
,
R. R.
,
Avazmohammadi
,
R.
,
Lapshin
,
E.
,
Bachman
,
T. N.
,
Sacks
,
M.
, and
Simon
,
M. A.
,
2017
, “
Biomechanical and Hemodynamic Measures of Right Ventricular Diastolic Function: Translating Tissue Biomechanics to Clinical Relevance
,”
J. Am. Hear. Assoc. Cardiovasc. Cerebrovasc. Dis.
,
6
(
9
), p.
e006084
.10.1161/JAHA.117.006084
4.
Liu
,
W.
,
Nguyen‐Truong
,
M.
,
Labus
,
K.
,
Boon
,
J.
,
Easley
,
J.
,
Monnet
,
E.
,
Puttlitz
,
C.
, and
Wang
,
Z.
,
2020
, “
Correlations Between the Right Ventricular Passive Elasticity and Organ Function in Adult Ovine
,”
J. Integr. Cardiol.
,
6
, pp.
1
6
.10.15761/JIC.1000294
5.
Liu
,
W.
, and
Wang
,
Z.
,
2019
, “
Current Understanding of the Biomechanics of Ventricular Tissues in Heart Failure
,”
Bioengineering
,
7
(
1
), p.
2
.10.3390/bioengineering7010002
6.
Ghaemi
,
H.
,
Behdinan
,
K.
, and
Spence
,
A. D.
,
2009
, “
In Vitro Technique in Estimation of Passive Mechanical Properties of Bovine Heart: Part I. Experimental Techniques and Data
,”
Med. Eng. Phys.
,
31
(
1
), pp.
76
82
.10.1016/j.medengphy.2008.04.008
7.
Hill
,
M. R.
,
Simon
,
M. A.
,
Valdez-Jasso
,
D.
,
Zhang
,
W.
,
Champion
,
H. C.
, and
Sacks
,
M. S.
,
2014
, “
Structural and Mechanical Adaptations of Right Ventricular Free Wall Myocardium to Pulmonary-Hypertension Induced Pressure Overload
,”
Ann. Biomed. Eng.
,
42
(
12
), pp.
2451
2465
.10.1007/s10439-014-1096-3
8.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
,
2009
, “
Constitutive Modelling of Passive Myocardium: A Structurally Based Framework for Material Characterization
,”
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
,
367
(
1902
), pp.
3445
3475
.10.1098/rsta.2009.0091
9.
Sirry
,
M. S.
,
Butler
,
J. R.
,
Patnaik
,
S. S.
,
Brazile
,
B.
,
Bertucci
,
R.
,
Claude
,
A.
,
McLaughlin
,
R.
,
Davies
,
N. H.
,
Liao
,
J.
, and
Franz
,
T.
,
2016
, “
Characterisation of the Mechanical Properties of Infarcted Myocardium in the Rat Under Biaxial Tension and Uniaxial Compression
,”
J. Mech. Behav. Biomed. Mater.
,
63
, pp.
252
264
.10.1016/j.jmbbm.2016.06.029
10.
Valdez-Jasso
,
D.
,
Simon
,
M. A.
,
Champion
,
H. C.
, and
Sacks
,
M. S.
,
2012
, “
A Murine Experimental Model for the Mechanical Behaviour of Viable Right-Ventricular Myocardium
,”
J. Physiol.
,
590
(
18
), pp.
4571
4584
.10.1113/jphysiol.2012.233015
11.
Sommer
,
G.
,
Schriefl
,
A. J.
,
Andrä
,
M.
,
Sacherer
,
M.
,
Viertler
,
C.
,
Wolinski
,
H.
, and
Holzapfel
,
G. A.
,
2015
, “
Biomechanical Properties and Microstructure of Human Ventricular Myocardium
,”
Acta Biomater.
,
24
(
Suppl. C
), pp.
172
192
.10.1016/j.actbio.2015.06.031
12.
Dokos
,
S.
,
Smaill
,
B. H.
,
Young
,
A. A.
,
Legrice
,
I. J.
, and
Legrice
,
I. J.
,
2002
, “
Shear Properties of Passive Ventricular Myocardium
,”
Am. J. Physiol. Hear. Circ. Physiol.
,
283
, pp.
2650
2659
.10.1152/ajpheart.00111.2002
13.
Ahmad
,
F.
,
Prabhu
,
R.
,
Liao
,
J.
,
Soe
,
S.
,
Jones
,
M. D.
,
Miller
,
J.
,
Berthelson
,
P.
,
Enge
,
D.
,
Copeland
,
K. M.
,
Shaabeth
,
S.
,
Johnston
,
R.
,
Maconochie
,
I.
, and
Theobald
,
P. S.
,
2018
, “Biomechanical Properties and Microstructure of Neonatal Porcine Ventricles,”
J. Mech. Behav. Biomed. Mater.
, 88, pp. 18–28.10.1016/j.jmbbm.2018.07.038
14.
Reddy
,
S.
, and
Bernstein
,
D.
,
2015
, “
Molecular Mechanisms of Right Ventricular Failure
,”
Circulation
,
132
(
18
), pp.
1734
1742
.10.1161/CIRCULATIONAHA.114.012975
15.
Witzenburg
,
C.
,
Raghupathy
,
R.
,
Kren
,
S. M.
,
Taylor
,
D. A.
, and
Barocas
,
V. H.
,
2012
, “
Mechanical Changes in the Rat Right Ventricle With Decellularization
,”
J. Biomech.
,
45
(
5
), pp.
842
849
.10.1016/j.jbiomech.2011.11.025
16.
Javani
,
S.
,
Gordon
,
M.
, and
Azadani
,
A. N.
,
2016
, “
Biomechanical Properties and Microstructure of Heart Chambers: A Paired Comparison Study in an Ovine Model
,”
Ann. Biomed. Eng.
,
44
(
11
), pp.
3266
3283
.10.1007/s10439-016-1658-7
17.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C.
,
1990
, “
Biaxial Mechanical Behavior of Excised Ventricular Epicardium
,”
Am. J. Physiol. Circ. Physiol.
,
259
(
1
), pp.
H101
H108
.10.1152/ajpheart.1990.259.1.H101
18.
Kirton
,
R. S.
,
Taberner
,
A. J.
,
Nielsen
,
P. M. F.
,
Young
,
A. A.
, and
Loiselle
,
D. S.
,
2005
, “
Effects of BDM, [Ca2+]o, and Temperature on the Dynamic Stiffness of Quiescent Cardiac Trabeculae From Rat
,”
Am. J. Physiol.—Hear. Circ. Physiol.
,
288
(
4 57-4
), pp.
1662
1667
.10.1152/ajpheart.00906.2004
19.
Konold
,
T.
, and
Bone
,
G. E.
,
2011
, “
Heart Rate Variability Analysis in Sheep Affected by Transmissible Spongiform Encephalopathies
,”
BMC Res. Notes
,
4
(
1
), p.
539
.10.1186/1756-0500-4-539
20.
Ooi
,
C. Y.
,
Wang
,
Z.
,
Tabima
,
D. M.
,
Eickhoff
,
J. C.
, and
Chesler
,
N. C.
,
2010
, “
The Role of Collagen in Extralobar Pulmonary Artery Stiffening in Response to Hypoxia-Induced Pulmonary Hypertension
,”
Am. J. Physiol. Circ. Physiol.
,
299
(
6
), pp.
H1823
H1831
.10.1152/ajpheart.00493.2009
21.
Lakes
,
R. S.
,
1998
,
Viscoelastic Solids
,
CRC Press
, Boca Raton, FL.
22.
Wang
,
Z.
, and
Chesler
,
N. C.
,
2012
, “
Role of Collagen Content and Cross-Linking in Large Pulmonary Arterial Stiffening After Chronic Hypoxia
,”
Biomech. Model. Mechanobiol.
,
11
(
1–2
), pp.
279
289
.10.1007/s10237-011-0309-z
23.
Ambrosetti-Giudici
,
S.
,
Gédet
,
P.
,
Ferguson
,
S. J.
,
Chegini
,
S.
, and
Burger
,
J.
,
2010
, “
Viscoelastic Properties of the Ovine Posterior Spinal Ligaments Are Strain Dependent
,”
Clin. Biomech.
,
25
(
2
), pp.
97
102
.10.1016/j.clinbiomech.2009.10.017
24.
Provenzano
,
P.
,
Lakes
,
R.
,
Keenan
,
T.
, and
Vanderby
,
R.
,
2001
, “
Nonlinear Ligament Viscoelasticity
,”
Ann. Biomed. Eng.
,
29
(
10
), pp.
908
914
.10.1114/1.1408926
25.
Hingorani
,
R. V.
,
Provenzano
,
P. P.
,
Lakes
,
R. S.
,
Escarcega
,
A.
, and
Vanderby
,
R.
,
2004
, “
Nonlinear Viscoelasticity in Rabbit Medial Collateral Ligament
,”
Ann. Biomed. Eng.
,
32
(
2
), pp.
306
312
.10.1023/B:ABME.0000012751.31686.70
26.
Duenwald
,
S. E.
,
Vanderby
,
R. J.
, and
Lakes
,
R. S.
,
2009
, “
Viscoelastic Relaxation and Recovery of Tendon
,”
Ann. Biomed. Eng.
,
37
(
6
), pp.
1131
1140
.10.1007/s10439-009-9687-0
27.
Camacho
,
P.
,
Fan
,
H.
,
Liu
,
Z.
, and
He
,
J.-Q.
,
2016
, “
Large Mammalian Animal Models of Heart Disease
,”
J. Cardiovasc. Dev. Dis.
,
3
(
4
), p.
30
.10.3390/jcdd3040030
28.
Dixon
,
J. A.
, and
Spinale
,
F. G.
,
2009
, “
Large Animal Models of Heart Failure
,”
Circ. Hear. Fail.
,
2
(
3
), pp.
262
271
.10.1161/CIRCHEARTFAILURE.108.814459
29.
Pham
,
T.
, and
Sun
,
W.
,
2012
, “
Comparison of Biaxial Mechanical Properties of Coronary Sinus Tissues From Porcine, Ovine and Aged Human Species
,”
J. Mech. Behav. Biomed. Mater.
,
6
, pp.
21
29
.10.1016/j.jmbbm.2011.09.001
30.
Demer
,
L. L.
, and
Yin
,
F. C.
,
1983
, “
Passive Biaxial Mechanical Properties of Isolated Canine Myocardium
,”
J. Physiol.
,
339
(
1
), pp.
615
630
.10.1113/jphysiol.1983.sp014738
31.
Wang
,
Z.
,
Lakes
,
R. S.
,
Golob
,
M.
,
Eickhoff
,
J. C.
, and
Chesler
,
N. C.
,
2013
, “
Changes in Large Pulmonary Arterial Viscoelasticity in Chronic Pulmonary Hypertension
,”
PLoS One
,
8
(
11
), p.
e78569
.10.1371/journal.pone.0078569
32.
Bergel
,
D. H.
,
1961
, “
The Dynamic Elastic Properties of the Arterial Wall
,”
J. Physiol.
,
156
(
3
), pp.
458
469
.10.1113/jphysiol.1961.sp006687
33.
Cox
,
R. H.
,
1984
, “
Viscoelastic Properties of Canine Pulmonary Arteries
,”
Am. J. Physiol.
,
246
(
1
), pp.
H90
H96
.10.1152/ajpheart.1984.246.1.H90
34.
Mangoni
,
A. A.
,
Mircoli
,
L.
,
Giannattasio
,
C.
,
Ferrari
,
A. U.
, and
Mancia
,
G.
,
1996
, “
Heart Rate-Dependence of Arterial Distensibility In Vivo
,”
J. Hypertens.
,
14
(
7
), pp.
897
901
.10.1097/00004872-199607000-00013
35.
Gamero
,
L. G.
,
Armentano
,
R. L.
,
Barra
,
J. G.
,
Simon
,
A.
, and
Levenson
,
J.
,
2001
, “
Identification of Arterial Wall Dynamics in Conscious Dogs
,”
Exp. Physiol.
,
86
(
4
), pp.
519
528
.10.1113/eph8602172
36.
Anssari-Benam
,
A.
,
Bucchi
,
A.
,
Screen
,
H. R. C.
, and
Evans
,
S. L.
,
2017
, “
A Transverse Isotropic Viscoelastic Constitutive Model for Aortic Valve Tissue
,”
R. Soc. Open Sci.
,
4
(
1
), p.
160585
.10.1098/rsos.160585
37.
Lujan
,
T. J.
,
Underwood
,
C. J.
,
Jacobs
,
N. T.
, and
Weiss
,
J. A.
,
2009
, “
Contribution of Glycosaminoglycans to Viscoelastic Tensile Behavior of Human Ligament
,”
J. Appl. Physiol.
,
106
(
2
), pp.
423
431
.10.1152/japplphysiol.90748.2008
38.
Anssari-Benam
,
A.
,
Barber
,
A. H.
, and
Bucchi
,
A.
,
2016
, “
Evaluation of Bioprosthetic Heart Valve Failure Using a Matrix-Fibril Shear Stress Transfer Approach
,”
J. Mater. Sci. Mater. Med.
,
27
(
2
), p.
42
.10.1007/s10856-015-5657-2
39.
Anssari-Benam
,
A.
,
Bader
,
D. L.
, and
Screen
,
H. R. C.
,
2011
, “
A Combined Experimental and Modelling Approach to Aortic Valve Viscoelasticity in Tensile Deformation
,”
J. Mater. Sci. Mater. Med.
,
22
(
2
), pp.
253
262
.10.1007/s10856-010-4210-6
40.
Linke
,
W. A.
, and
Fernandez
,
J. M.
,
2002
, “
Cardiac Titin: Molecular Basis of Elasticity and Cellular Contribution to Elastic and Viscous Stiffness Components in Myocardium
,”
J. Muscle Res. Cell Motil.
,
23
(
5/6
), pp.
483
497
.10.1023/A:1023462507254
41.
Caporizzo
,
M. A.
,
Chen
,
C. Y.
,
Salomon
,
A. K.
,
Margulies
,
K. B.
, and
Prosser
,
B. L.
,
2018
, “
Microtubules Provide a Viscoelastic Resistance to Myocyte Motion
,”
Biophys. J.
,
115
(
9
), pp.
1796
1807
.10.1016/j.bpj.2018.09.019
42.
Ricardo
,
A.
,
Louis
,
M. J.
,
Alain
,
S.
,
Florence
,
B.
,
Juan
,
B.
, and
Jaime
,
L.
,
1995
, “
Effects of Hypertension on Viscoelasticity of Carotid and Femoral Arteries in Humans
,”
Hypertension
,
26
(
1
), pp.
48
54
.10.1161/01.HYP.26.1.48
43.
Armentano
,
R. L.
,
Graf
,
S.
,
Barra
,
J. G.
,
Velikovsky
,
G.
,
Baglivo
,
H.
,
Sánchez
,
R.
,
Simon
,
A.
,
Pichel
,
R. H.
, and
Levenson
,
J.
,
1998
, “
Carotid Wall Viscosity Increase is Related to Intima-Media Thickening in Hypertensive Patients
,” Hypertension, 31(1), pp.
534
539
.
44.
Oyen
,
M. L.
, and
Ko
,
C. C.
,
2007
, “
Examination of Local Variations in Viscous, Elastic, and Plastic Indentation Responses in Healing Bone
,”
J. Mater. Sci. Mater. Med.
,
18
(
4
), pp.
623
628
.10.1007/s10856-007-2311-7
45.
Ramo
,
N. L.
,
Puttlitz
,
C. M.
, and
Troyer
,
K. L.
,
2018
, “
The Development and Validation of a Numerical Integration Method for Non-Linear Viscoelastic Modeling
,”
PLoS One
,
13
(
1
), p.
e0190137
.10.1371/journal.pone.0190137
46.
Troyer
,
K. L.
,
Estep
,
D. J.
, and
Puttlitz
,
C. M.
,
2012
, “
Viscoelastic Effects During Loading Play an Integral Role in Soft Tissue Mechanics
,”
Acta Biomater.
,
8
(
1
), pp.
234
243
.10.1016/j.actbio.2011.07.035
47.
Eisenberg
,
E.
,
Di Palo
,
K. E.
, and
Piña
,
I. L.
,
2018
, “
Sex Differences in Heart Failure
,”
Clin. Cardiol.
,
41
(
2
), pp.
211
216
.10.1002/clc.22917
You do not currently have access to this content.