Abstract

Contrasting results are reported when the spine is tested at different strain rates. Tissue specimens from the ligaments or the intervertebral discs (IVD, including annulus fibrosus and nucleus pulposus) exhibit higher stiffness and lower dissipation at high strain rates. Counterintuitively, when spine segments are tested at high rates, the hysteresis area and loop width increase. It is unclear how the load is shared between the different structures at different loading rates. The hypotheses of this study were: (i) As the IVD stiffens at higher loading rates, the strain distribution around the disc would be different depending on the loading rate; (ii) Preconditioning attenuates the strain-rate dependency of the IVD, thus making differences in strain distribution smaller at the different rates. Six segments of three vertebrae (L4–L6) were extracted from porcine spines and tested in presso-flexion at different loading rates (reaching full load in 0.67, 6.7, and 67 s). The full-field strain maps were measured using digital image correlation on the surface of the IVDs from lateral. The posterior-to-anterior trends of the strain were computed in detail for each IVD, and compared between loading rates. The values and the direction of principal strain on the surface of the IVDs, vertebrae, and endplates remained unchanged at different rates. In the transition zone between IVD and vertebra, only slight differences due to the loading rate appeared but with no statistical significance. These findings will allow better understanding of the rate-dependent behavior and failure of the IVD.

References

1.
Gray
,
H.
,
1858
,
Gray's Anatomy
,
Churchill Livingstone
,
London
.
2.
Ranu
,
H. S.
,
1990
, “
Measurement of Pressures in the Nucleus and Within the Annulus of the Human Spinal Disc: Due to Extreme Loading
,”
Proc. Inst. Mech. Eng. Part H
,
204
(
3
), pp.
141
146
.10.1243/PIME_PROC_1990_204_248_02
3.
Thoreson
,
O.
,
Ekstrom
,
L.
,
Hansson
,
H. A.
,
Todd
,
C.
,
Witwit
,
W.
,
Sward Aminoff
,
A.
,
Jonasson
,
P.
, and
Baranto
,
A.
,
2017
, “
The Effect of Repetitive Flexion and Extension Fatigue Loading on the Young Porcine Lumbar Spine, a Feasibility Study of MRI and Histological Analyses
,”
J. Exp. Orthop.
,
4
(
1
), p.
16
.10.1186/s40634-017-0091-7
4.
Fennel
,
A. J.
,
Jones
,
A. P.
, and
Hukins
,
D. W. L.
,
1996
, “
Migration of the Nucleus Pulposus Within the Intervertebral Disc During Flexion and Extension of the Spine
,”
Spine
,
21
, pp.
2753
5757
.10.1097/00007632-199612010-00009
5.
Fung
,
Y. C.
,
1981
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer
,
Berlin
.
6.
Iatridis
,
J. C.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
,
1996
, “
Is the Nucleus Pulposus a Solid or a Fluid? Mechanical Behaviors of the Nucleus Pulposus of the Human Intervertebral Disc
,”
Spine
,
21
, pp.
1174
1184
.10.1097/00007632-199605150-00009
7.
Race
,
A.
,
Broom
,
N. D.
, and
Robertson
,
P. A.
,
2000
, “
Effect of Loading Rate and Hydration on the Mechanical Properties of the Disc
,”
Spine
,
25
, pp.
662
669
.10.1097/00007632-200003150-00003
8.
Chan
,
S. C.
,
Ferguson
,
S. J.
, and
Gantenbein-Ritter
,
B.
,
2011
, “
The Effects of Dynamic Loading on the Intervertebral Disc
,”
Eur. Spine J.
,
20
(
11
), pp.
1796
1812
.10.1007/s00586-011-1827-1
9.
Newell
,
N.
,
Little
,
J. P.
,
Christou
,
A.
,
Adams
,
M. A.
,
Adam
,
C. J.
, and
Masouros
,
S. D.
,
2017
, “
Biomechanics of the Human Intervertebral Disc: A Review of Testing Techniques and Results
,”
J. Mech. Behav. Biomed. Mater.
,
69
, pp.
420
434
.10.1016/j.jmbbm.2017.01.037
10.
Adams
,
M. A.
,
McMillan
,
D. W.
,
Green
,
T. P.
, and
Dolan
,
P.
,
1996
, “
Sustained Loading Generates Stress Concentrations in Lumbar Intervertebral Discs
,”
Spine
,
21
(
4
), pp.
434
438
.10.1097/00007632-199602150-00006
11.
Kasra
,
M.
,
Parnianpour
,
M.
,
Shirazi-Adl
,
A.
,
Wang
,
J. L.
, and
Grynpas
,
M. D.
,
2004
, “
Effect of Strain Rate on Tensile Properties of Sheep Disc Anulus Fibrosus
,”
Technol. Health Care
,
12
(
4
), pp.
333
342
.10.3233/THC-2004-12405
12.
Galante
,
J. O.
,
1967
, “
Tensile Properties of the Human Lumbar Annulus Fibrosus
,”
Acta Orthop. Scand.
,
38
(
Suppl. 100
), pp.
1
91
.10.3109/ort.1967.38.suppl-100.01
13.
Ochia
,
R. S.
,
Tencer
,
A. F.
, and
Ching
,
R. P.
,
2003
, “
Effect of Loading Rate on Endplate and Vertebral Body Strength in Human Lumbar Vertebrae
,”
J. Biomech.
,
36
(
12
), pp.
1875
1881
.10.1016/S0021-9290(03)00211-2
14.
Pintar
,
F. A.
,
Yoganandan
,
N.
, and
Voo
,
L.
,
1998
, “
Effect of Age and Loading Rate on Human Cervical Spine Injury Threshold
,”
Spine
,
23
, pp.
1957
1962
.10.1097/00007632-199809150-00007
15.
Elias
,
P. Z.
,
Nuckley
,
D. J.
, and
Ching
,
R. P.
,
2006
, “
Effect of Loading Rate on the Compressive Mechanics of the Immature Baboon Cervical Spine
,”
ASME J. Biomech. Eng.
,
128
(
1
), pp.
18
23
.10.1115/1.2133767
16.
Marras
,
W. S.
,
Knapik
,
G. G.
, and
Ferguson
,
S.
,
2009
, “
Loading Along the Lumbar Spine as Influence by Speed, Control, Load Magnitude, and Handle Height During Pushing
,”
Clin. Biomech. (Bristol, Avon)
,
24
(
2
), pp.
155
163
.10.1016/j.clinbiomech.2008.10.007
17.
Wilke
,
H. J.
,
Jungkunz
,
B.
,
Wenger
,
K.
, and
Claes
,
L.
,
1998
, “
Spinal Segment Range of Motion as a Function of In Vitro Test Conditions: Effects of Exposure Period, Accumulated Cycles, Angular-Deformation Rate, and Moisture Condition
,”
Anat. Rec.
,
251
(
1
), pp.
15
19
.10.1002/(SICI)1097-0185(199805)251:1<15::AID-AR4>3.0.CO;2-D
18.
Gay
,
R. E.
,
Ilharreborde
,
B.
,
Zhao
,
K.
,
Boumediene
,
E.
, and
An
,
K. N.
,
2008
, “
The Effect of Loading Rate and Degeneration on Neutral Region Motion in Human Cadaveric Lumbar Motion Segments
,”
Clin. Biomech. (Bristol, Avon)
,
23
(
1
), pp.
1
7
.10.1016/j.clinbiomech.2007.08.006
19.
Heuer
,
F.
,
Schmidt
,
H.
, and
Wilke
,
H. J.
,
2008
, “
The Relation Between Intervertebral Disc Bulging and Annular Fiber Associated Strains for Simple and Complex Loading
,”
J. Biomech.
,
41
(
5
), pp.
1086
1094
.10.1016/j.jbiomech.2007.11.019
20.
Palanca
,
M.
,
Marco
,
M.
,
Ruspi
,
M. L.
, and
Cristofolini
,
L.
,
2017
, “
Full-Field Strain Distribution in Multi-Vertebra Spine Segments: An In Vitro Application of Digital Image Correlation
,”
Med. Eng. Phys.
, 15(1), pp.
1
8
.10.1016/j.medengphy.2017.11.003
21.
Lionello
,
G.
,
Sirieix
,
C.
, and
Baleani
,
M.
,
2014
, “
An Effective Procedure to Create a Speckle Pattern on Biological Soft Tissue for Digital Image Correlation Measurements
,”
J. Mech. Behav. Biomed. Mater.
,
39
, pp.
1
8
.10.1016/j.jmbbm.2014.07.007
22.
Palanca
,
M.
,
Tozzi
,
G.
, and
Cristofolini
,
L.
,
2016
, “
The Use of Digital Image Correlation in the Biomechanical Area: A Review
,”
Int. Biomech.
,
3
(
1
), pp.
1
21
.10.1080/23335432.2015.1117395
23.
Palanca
,
M.
,
Brugo
,
T. M.
, and
Cristofolini
,
L.
,
2015
, “
Use of Digital Image Correlation to Investigate the Biomechanics of the Vertebra
,”
J. Mech. Med. Biol.
,
15
(
02
), pp.
1540004
10
.10.1142/S0219519415400047
24.
Jones
,
E. M. C.
,
2018
, “
A Good Practices Guide for Digital Image Correlation
,”
International Digital Image Correlation Society
.10.32720/idics/gpg.ed1
25.
Iatridis
,
J. C.
,
MaClean
,
J. J.
, and
Ryan
,
D. A.
,
2005
, “
Mechanical Damage to the Intervertebral Disc Annulus Fibrosus Subjected to Tensile Loading
,”
J. Biomech.
,
38
(
3
), pp.
557
565
.10.1016/j.jbiomech.2004.03.038
26.
Gregory
,
D. E.
, and
Callaghan
,
J. P.
,
2010
, “
An Examination of the Influence of Strain Rate on Subfailure Mechanical Properties of the Annulus Fibrosus
,”
ASME J. Biomech. Eng.
,
132
(
9
), p.
091010
.10.1115/1.4001945
27.
Sheng
,
S. R.
,
Wang
,
X. Y.
,
Xu
,
H. Z.
,
Zhu
,
G. Q.
, and
Zhou
,
Y. F.
,
2010
, “
Anatomy of Large Animal Spines and Its Comparison to the Human Spine: A Systematic Review
,”
Eur. Spine J.
,
19
(
1
), pp.
46
56
.10.1007/s00586-009-1192-5
28.
O'Connell
,
G.
,
Vreesilovic
,
E. J.
, and
Elliott
,
D. M.
,
2007
, “
Comparison of Animals Used in Disc Research to Human Lumbar Disc Geometry
,”
Spine
,
32
, pp.
328
333
.10.1097/01.brs.0000253961.40910.c1
29.
Beckstein
,
J. C.
,
Sen
,
S.
,
Schaer
,
T. P.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2008
, “
Comparison of Animal Discs Used in Disc Research to Human Lumbar Disc
,”
Spine
,
33
(
6
), pp.
E166
E173
.10.1097/BRS.0b013e318166e001
You do not currently have access to this content.