The intervertebral disc (IVD) receives important nutrients, such as glucose, from surrounding blood vessels. Poor nutritional supply is believed to play a key role in disc degeneration. Several investigators have presented finite element models of the IVD to investigate disc nutrition; however, none has predicted nutrient levels and cell viability in the disc with a realistic 3D geometry and tissue properties coupled to mechanical deformation. Understanding how degeneration and loading affect nutrition and cell viability is necessary for elucidating the mechanisms of disc degeneration and low back pain. The objective of this study was to analyze the effects of disc degeneration and static deformation on glucose distributions and cell viability in the IVD using finite element analysis. A realistic 3D finite element model of the IVD was developed based on mechano-electrochemical mixture theory. In the model, the cellular metabolic activities and viability were related to nutrient concentrations, and transport properties of nutrients were dependent on tissue deformation. The effects of disc degeneration and mechanical compression on glucose concentrations and cell density distributions in the IVD were investigated. To examine effects of disc degeneration, tissue properties were altered to reflect those of degenerated tissue, including reduced water content, fixed charge density, height, and endplate permeability. Two mechanical loading conditions were also investigated: a reference (undeformed) case and a 10% static deformation case. In general, nutrient levels decreased moving away from the nutritional supply at the disc periphery. Minimum glucose levels were at the interface between the nucleus and annulus regions of the disc. Deformation caused a 6.2% decrease in the minimum glucose concentration in the normal IVD, while degeneration resulted in an 80% decrease. Although cell density was not affected in the undeformed normal disc, there was a decrease in cell viability in the degenerated case, in which averaged cell density fell 11% compared with the normal case. This effect was further exacerbated by deformation of the degenerated IVD. Both deformation and disc degeneration altered the glucose distribution in the IVD. For the degenerated case, glucose levels fell below levels necessary for maintaining cell viability, and cell density decreased. This study provides important insight into nutrition-related mechanisms of disc degeneration. Moreover, our model may serve as a powerful tool in the development of new treatments for low back pain.

References

1.
NIH, 1997,
“Research on Low Back Pain and Common Spinal Disorders,”
NIH Guide 26:16.
2.
Frymoyer
,
J. W.
, and
Durett
,
C. L.
, 1997,
The Adult Spine: Principles and Practice
,
J. W.
Frymoyer
,
T. B.
Ducker
,
N. M.
Hadler
,
J. P.
Kostuik
,
J. N.
Weinstein
, and
T. S.
Whitecloud
, eds.,
Lippincott-Raven
,
New York
, pp.
143
150
.
3.
Eyre
,
D. R.
,
Benya
,
P.
,
Buckwalter
,
J.
,
Caterson
,
B.
,
Heinegard
,
D.
,
Oegema
,
T.
,
Pearce
,
R.
,
Pope
,
M.
,
Urban
,
J.
, 1989,
New Perspectives on Low Back Pain
,
J. W.
Frymoyer
and
S. L.
Gordon
, eds.,
American Academy of Orthopaedic Surgeons
,
Park Ridge, IL
, pp.
147
207
.
4.
Kelsey
,
J. L.
,
Mundt
,
D. F.
, and
Golden
,
A. L.
, 1992,
The Lumbar Spine and Back Pain
,
J. I. V.
Malcolm
, eds.,
Churchill Livingstone
,
New York
, pp.
537
549
.
5.
White
,
A. A.
, 1981,
“Biomechanics of Lumbar Spine and Sacroiliac Articulation: Relevance to Idiopathic Low Back Pain,” Symposium on Idiopathic Low Back Pain
,
A. A.
White
and
S. L.
Gordon
, eds.,
CV Mosby Co.
,
St. Louis
, pp.
296
322
.
6.
Buckwalter
,
J. A.
, 1995, “
Aging and Degeneration of the Human Intervertebral Disc
,”
Spine
,
20
(
11
), pp.
1307
1314
.
7.
Urban
,
J. P.
,
Smith
,
S.
, and
Fairbank
,
J. C.
, 2004, “
Nutrition of the Intervertebral disc
,”
Spine
,
29
, pp.
2700
2709
.
8.
Hickey
,
D. S.
, and
Hukins
,
D. W. L.
, 1980, “
Relation Between the Structure of the Annulus Fibrosus and the Function and Failure of the Intervertebral Disc
,”
Spine
,
5
, pp.
106
116
.
9.
Marchand
,
F.
, and
Ahmed
,
A. M.
, 1990, “
Investigation of the Laminate Structure of Lumbar Disc Annulus Fibrosus
,”
Spine
,
15
(
5
), pp.
402
410
.
10.
Urban
,
J. P.
, and
Roberts
,
S.
, 1995, “
Development and Degeneration of the Intervertebral Discs
,”
Mol. Med. Today
,
1
(
7
), pp.
329
335
.
11.
Bibby
,
S. R. S.
,
“Cell Metabolism and Viability in the Intervertebral Disc,”
2002, Ph.D. dissertation, University of Oxford, Oxford, UK.
12.
Urban
,
J. P. G.
, and
Roberts
,
S.
, 2003, “
Degeneration of the Intervertebral Disc
,”
Arthritis Res. Ther.
,
5
(
3
), pp.
120
130
.
13.
Masuda
,
K.
, 2008,
“Biological Repair of the Degenerated Intervertebral Disc by the Injection of Growth Factors,”
Eur. Spine J.
,
17
(Suppl
4
), pp.
S441
S451
.
14.
Nachemson
,
A.
,
Lewin
,
T.
,
Maroudas
,
A.
, and
Freeman
,
M. A.
, 1970, “
In Vitro Diffusion of Dye Through the End-Plates and the Annulus Fibrosus of Human Lumbar Inter-Vertebral Discs
,”
Acta Orthop. Scand.
,
41
(
6
), pp.
589
607
.
15.
Horner
,
H. A.
, and
Urban
,
J. P.
, 2001, “
2001 Volvo Award Winner in Basic Science Studies: Effect of Nutrient Supply on the Viability of Cells From the Nucleus Pulposus of the Intervertebral Disc
,”
Spine
,
26
(
23
), pp.
2543
2549
.
16.
Maroudas
,
A.
,
Stockwell
,
R. A.
,
Nachemson
, and
A.
,
Urban
,
J.
, 1975, “
Factors Involved in the Nutrition of the Human Lumbar Intervertebral Disc: Cellularity and Diffusion of Glucose In Vitro
,”
J. Anat.
,
120
(
1
), pp.
113
130
.
17.
Urban
,
J. P. G.
,
Holms
,
S.
,
Maroudas
,
A.
, and
Nachemson
,
A.
, 1977, “
Nutrition of the Intervertebral Disc: An In Vivo Study of Solute Transport
,”
Clin. Orthop.
,
129
, pp.
101
114
.
18.
Urban
,
J. P.
,
Holm
,
S.
, and
Maroudas
,
A.
, 1978, “
Diffusion of Small Solutes Into the Intervertebral Disc: As In Vivo Study
,”
Biorheology
,
15
(
3–4
), pp.
203
221
.
19.
Ogata
,
K.
, and
Whiteside
,
L. A.
, 1981, “
1980 Volvo Award Winner in Basic Science. Nutritional Pathways of the Intervertebral Disc. An Experimental Study Using Hydrogen Washout Technique
,”
Spine
,
6
(
3
), pp.
211
216
.
20.
Holm
,
S.
,
Maroudas
,
A.
,
Urban
,
J. P.
,
Selstam
,
G.
, and
Nachemson
,
A.
, 1981, “
Nutrition of the Intervertebral Disc: Solute Transport and Metabolism
,”
Connect. Tissue Res.
,
8
(
2
), pp.
101
119
.
21.
Crock
,
H. V.
, and
Goldwasser
,
M.
, 1984, “
Anatomic Studies of the Circulation in the Region of the Vertebral End-Plate in Adult Greyhound Dogs
,”
Spine
,
9
(
7
), pp.
702
706
.
22.
Moore
,
R. J.
,
Osti
,
O. L.
,
Vernon-Roberts
,
B.
, and
Fraser
,
R. D.
, 1992, “
Changes in Endplate Vascularity After an Outer Anulus Tear in the Sheep
,”
Spine
,
17
(
8
), pp.
874
878
.
23.
Roberts
,
S.
,
Urban
,
J. P.
,
Evans
,
H.
, and
Eisenstein
,
S. M.
, 1996, “
Transport Properties of the Human Cartilage Endplate in Relation to Its Composition and Calcification
,”
Spine
,
21
(
4
), pp.
415
420
.
24.
Brown
,
M. D.
, and
Tsaltas
,
T. T.
, 1976, “
Studies on the Permeability of the Intervertebral Disc During Skeletal Maturation
,”
Spine
,
1
, pp.
240
244
.
25.
Bibby
,
S. R.
,
Fairbank
,
J. C.
,
Urban
,
M. R.
, and
Urban
,
J. P.
, 2002, “
Cell Viability in Scoliotic Discs in Relation to Disc Deformity and Nutrient Levels
,”
Spine
,
27
(
20
), pp.
2220
2228
.
26.
Ishihara
,
H.
, and
Urban
,
J. P.
, 1999, “
Effects of Low Oxygen Concentrations and Metabolic Inhibitors on Proteoglycan and Protein Synthesis Rates in the Intervertebral Disc
,”
J. Orthop. Res.
,
17
(
6
), pp.
829
835
.
27.
Ohshima
,
H.
, and
Urban
,
J. P.
, 1992, “
The Effect of Lactate and pH on Proteoglycan and Protein Synthesis Rates in the Intervertebral Disc
,”
Spine
,
17
(
9
), pp.
1079
1082
.
28.
Grunhagen
,
T.
,
Wilde
,
G.
,
Soukane
,
D. M.
,
Shirazi-Adl
,
S. A.
, and
Urban
,
J. P. G.
, 2006, “
Nutrient Supply and Intervertebral Disc Metabolism
,”
J. Bone Joint Surg. Am.
,
88
, pp.
30
35
.
29.
Risbud
,
M. V.
,
Guttapalli
,
A.
,
Stokes
,
D. G.
,
Hawkins
,
D.
,
Danielson
,
K. G.
,
Schaer
,
T. P.
,
Albert
,
T. J.
, and
Shapiro
,
I. M.
, 2006, “
Nucleus Pulposus Cells Express HIF-1alpha Under Normoxic Culture Conditions: A Metabolic Adaptation to the Intervertebral Disc Microenvironment
,”
J. Cell. Biochem.
,
98
, pp.
152
159
.
30.
Lee
,
D. C.
,
Adams
,
C. S.
,
Albert
,
T. J.
,
Shapiro
,
I. M.
,
Evans
,
S. M.
, and
Koch
,
C. J.
, 2007, “
In Situ Oxygen Utilization in the Rat Intervertebral Disc
,”
J. Anat.
,
210
, pp.
294
303
.
31.
Johnson
,
W. E. B.
,
Stephan
,
S.
, and
Roberts
,
S.
, 2008, “
The Influence of Serum, Glucose and Oxygen on Intervertebral Disc Cell Growth In Vitro: Implications for Degenerative Disc Disease
,”
Arthritis Res. Ther.
,
10
(
2
), pp.
R46
.
32.
Bibby
,
S. R.
, and
Urban
,
J. P.
, 2004, “
Effect of Nutrient Deprivation on the Viability of Intervertebral Disc Cells
,”
Eur. Spine J.
,
13
(
8
), pp.
695
701
.
33.
Shirazi-Adl
,
A.
,
Taheri
,
M.
, and
Urban
,
J. P.
, 2010, “
Analysis of Cell Viability in Intervertebral Disc: Effect of Endplate Permeability on Cell Population
,”
J. Biomech.
,
43
(
7
), pp.
1330
1336
.
34.
Guehring
,
T.
,
Wilde
,
G.
,
Sumner
,
M.
,
Grünhagen
,
T.
,
Karney
,
G. B.
,
Tirlapur
,
U. K.
, and
Urban
,
J. P.
, 2009, “
Notochordal Intervertebral Disc Cells: Sensitivity to Nutrient Deprivation
,”
Arthritis Rheum.
,
60
(
4
), pp.
1026
1034
.
35.
Huang
,
C.-Y.
, and
Gu
,
W. Y.
, 2008, “
Effects of Mechanical Compression on Metabolism and Distribution of Oxygen and Lactate in Intervertebral Disc
,”
J. Biomech.
,
41
(
6
), pp.
1184
1196
.
36.
Soukane
,
D. M.
,
Shirazi-Adl
,
A.
, and
Urban
,
J. P. G.
, 2009, “
Investigation of Solute Concentrations in a 3D Model of Intervertebral Disc
,”
Eur. Spine J.
,
18
, pp.
254
262
.
37.
Soukane
,
D. M.
,
Shirazi-Adl
,
A.
, and
Urban
,
J.
, 2005, “
Analysis of Nonlinear Coupled Diffusion of Oxygen and Lactic Acid in Intervertebral Discs
,”
J. Biomech. Eng.
,
127
(
7
), pp.
1121
1126
.
38.
Soukane
,
D. M.
,
Shirazi-Adl
,
A.
, and
Urban
,
J. P.
, 2007, “
Computation of Coupled Diffusion of Oxygen, Glucose and Lactic Acid in an Intervertebral Disc
,”
J. Biomech.
,
40
(
12
), pp.
2645
2654
.
39.
Selard
,
E.
,
Shirazi-Adl
,
A.
, and
Urban
,
J.
, 2003, “
Finite Element Study of Nutrient Diffusion in the Human Intervertebral Disc
,”
Spine
,
28
(
17
), pp.
1945
1953
.
40.
Magnier
,
C.
,
Boiron
,
O.
,
Wendling-Mansuy
,
S.
,
Chabrand
,
P.
, and
Deplano
,
V.
, 2009, “
Nutrient Distribution and Metabolism in the Intervertebral Disc in the Unloaded State: A Parametric Study
,”
J. Biomech.
,
42
(
2
), pp.
100
108
.
41.
Jackson
,
A. R.
,
Huang
,
C.-Y.
, and
Gu
,
W. Y.
, 2011, “
Effect of Endplate Calcification and Mechanical Deformation on the Distribution of Glucose in Intervertebral Disc: A 3D Finite Element Study
,”
Comp. Meth. Biomech. Biomed. Eng.
,
14
(
2
), pp.
195
204
.
42.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
, 1991, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
J. Biomech. Eng.
,
113
(
3
), pp.
245
258
.
43.
Gu
,
W. Y.
,
Yao
,
H.
,
Huang
,
C.-Y.
, and
Cheung
,
H. S.
, 2003, “
New Insight Into Deformation-Dependent Hydraulic Permeability of Gels and Cartilage, and Dynamic Behavior of Agarose Gels in Confined Compression
,”
J. Biomech.
,
36
, pp.
593
598
.
44.
Gu
,
W. Y.
,
Yao
,
H.
,
Vega
,
A. L.
, and
Flagler
,
D.
, 2004, “
Diffusivity of Ions in Agarose Gels and Intervertebral Disc: Effect of Porosity
,”
Ann. Biomed. Eng.
,
32
, pp.
1710
1717
.
45.
Thompson
,
J. P.
,
Pearce
,
R. H.
,
Schechter
,
M. T.
,
Adams
,
M. E.
,
Tsang
,
I. K. Y.
, and
Bishop
,
P. B.
, 1990, “
Preliminary Evaluation of a Scheme for Grading the Gross Morphology of the Human Intervertebral Disc
,”
Spine
,
15
, pp.
411
415
.
46.
Sun
,
D. N.
,
Gu
,
W. Y.
,
Guo
,
X. E.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1999, “
A Mixed Finite Element Formulation of Triphasic Mechano-Electrochemical Theory for Charged, Hydrated Biological Soft Tissues
,”
Int. J. Numer. Methods Eng.
,
45
, pp.
1375
1402
.
47.
Yao
,
H.
, and
Gu
,
W. Y.
, 2004, “
Physical Signals and Solute Transport in Cartilage Under Dynamic Unconfined Compression: Finite Element Analysis
,”
Ann. Biomed. Eng.
,
32
, pp.
380
390
.
48.
Yao
,
H.
, and
Gu
,
W. Y.
, 2007, “
Three-Dimensional Inhomogeneous Triphasic Finite-Element Analysis of Physical Signals and Solute Transport in Human Intervertebral Disc Under Axial Compression
,”
J. Biomech.
,
40
(
9
), pp.
2071
2077
.
49.
Roberts
,
S.
,
Menage
J.
,
Urban
,
J. P.
, 1989, “
Biochemical and Structural Properties of the Cartilage End-Plate and Its Relation to the Intervertebral Disc
,”
Spine
,
14
(
2
), pp.
166
174
.
50.
Setton
,
L. A.
,
Zhu
,
W.
,
Weidenbaum
,
M.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
, 1993, “
Compressive Properties of the Cartilaginous End-Plate of the Baboon Lumbar Spine
,”
J. Orthop. Res.
,
11
(
2
), pp.
228
239
.
51.
Gu
,
W. Y.
, and
Yao
,
H.
, 2003, “
Effects of Hydration and Fixed Charge Density on Fluid Transport in Charged Hydrated Soft Tissue
,”
Ann. Biomed. Eng.
,
31
(
10
), pp.
1162
1170
.
52.
Maroudas
,
A.
, 1975, “
Biophysical Chemistry of Cartilaginous Tissues With Special Reference to Solute and Fluid Transport
,”
Biorheology
,
12
, pp.
233
248
.
53.
Iatridis
,
J. C.
,
Kumar
,
S.
,
Foster
,
R. J.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
, 1999, “
Shear Mechanical Properties of Human Lumbar Annulus Fibrosus
,”
J. Orthop. Res.
,
17
(
5
), pp.
732
737
.
54.
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Weidenbaum
,
M.
, and
Mow
,
V. C.
, 1997, “
Alterations in the Mechanical Behavior of the Human Lumbar Nucleus Pulposus With Degeneration and Aging
,”
J. Orthop. Res.
,
15
(
2
), pp.
318
322
.
55.
Johannessen
,
W.
, and
Elliot
,
D. M.
, 2005, “
Effects of Degeneration on the Biphasic Material Properties of Human Nucleus Pulposus in Confined Compression
,”
Spine
,
30
(
24
), pp.
E724
E729
.
56.
Bernick
,
S.
, and
Cailliet
,
R.
, 1982, “
Vertebral End-Plate Changes With Aging of Human Vertebrae
,”
Spine
,
7
(
2
), pp.
97
102
.
57.
Roberts
,
S.
,
Menage
,
J.
, and
Eisenstein
,
S. M.
, 1993, “
The Cartilage End-Plate and Intervertebral Disc in Scoliosis: Calcification and Other Sequelae
,”
J. Orthop. Res.
,
11
(
5
), pp.
747
757
.
58.
Urban
,
M. R.
,
Fairbank
,
J. C.
,
Etherington
,
P. J.
,
Loh
,
F. L.
,
Winlove
,
C. P.
, and
Urban
,
J. P.
, 2001, “
Electrochemical Measurement of Transport Into Scoliotic Intervertebral Discs In Vivo Using Nitrous Oxide as a Tracer
,”
Spine
,
26
(
8
), pp.
984
990
.
59.
Nguyen-Minh
,
C.
,
Haughton
,
V. M.
,
Papke
,
R. A.
,
An
,
H.
,
Censky
, and
S. C.
, 1998, “
Measuring Diffusion of Solutes Into Intervertebral Disks With MR Imaging and Paramagnetic Contrast Medium
,”
AJNR Am. J. Neuroradiol.
,
19
(
9
), pp.
1781
1784
.
60.
Huang
,
C.-Y.
,
Yuan
,
T.-Y.
,
Jackson
,
A. R.
,
Hazbun
,
L.
, and
Gu
,
W. Y.
, 2007, “
Effects of Low Glucose Concentrations on Oxygen Consumption Rates of Intervertebral Disc Cells
,”
Spine
,
32
(
19
), pp.
2063
2069
.
61.
Bibby
,
S. R. S.
,
Jones
,
D. A.
,
Ripley
,
R. M.
, and
Urban
,
J. P.
, 2005, “
Metabolism of the Intervertebral Disc: Effects of Low Levels of Oxygen, Glucose, and pH on Rates of Energy Metabolism of Bovine Nucleus Pulposus Cells
,”
Spine
,
30
(
5
), pp.
487
496
.
62.
Brodin
,
H.
, 1955, “
Path of Nutrition in Articular Cartilage and Intervertebral Disk
,”
Acta Ortho. Scand.
,
24
, pp.
177
.
63.
Urban
,
J. P.
,
Holm
,
S.
,
Maroudas
,
A.
, and
Nachemson
,
A.
, 1982, “
Nutrition of the Intervertebral Disc: Effect of Fluid Flow on Solute Transport
,”
Clin. Orthop.
,
170
, pp.
296
302
.
64.
Haefeli
,
M.
,
Kalberer
,
F.
,
Saegesser
,
D.
,
Nerlich
,
A. G.
,
Boos
,
N.
, and
Paesold
,
G.
, 2006, “
The Course of Macroscropic Degeneration in the Human Lumbar Intervertebral Disc
,”
Spine
,
31
(
14
), pp.
1522
1531
.
65.
Urban
,
M. R.
,
Fairbank
,
J. C.
,
Bibby
,
S. R.
, and
Urban
,
J. P.
, 2001, “
Intervertebral Disc Composition in Neuromuscular Scoliosis: Changes in Cell Density and Glycosaminoglycan Concentration at the Curve Apex
,”
Spine
,
26
(
6
), pp.
610
617
.
66.
Bartels
,
E. M.
,
Fairbank
,
J. C.
,
Winlove
,
C. P.
, and
Urban
,
J. P.
, 1998, “
Oxygen and Lactate Concentrations Measured In Vivo in the Intervertebral Discs of Patients With Scoliosis and Back Pain
,”
Spine
,
23
(
1
), pp.
1
7
.
67.
Stokes
,
I. A.
, and
Iatridis
,
J. C.
, 2004, “
Mechanical conditions that accelerate intervertebral disc degeneration: overload versus immobilization
,”
Spine
,
29
(
23
), pp.
2724
2732
.
You do not currently have access to this content.