Knee osteoarthritis (OA) detrimentally impacts the lives of millions of older Americans through pain and decreased functional ability. Unfortunately, the pathomechanics and associated deviations from joint homeostasis that OA patients experience are not well understood. Alterations in mechanical stress in the knee joint may play an essential role in OA; however, existing literature in this area is limited. The purpose of this study was to evaluate the ability of an existing magnetic resonance imaging (MRI)-based modeling method to estimate articular cartilage contact area in vivo. Imaging data of both knees were collected on a single subject with no history of knee pathology at three knee flexion angles. Intra-observer reliability and sensitivity studies were also performed to determine the role of operator-influenced elements of the data processing on the results. The method’s articular cartilage contact area estimates were compared with existing contact area estimates in the literature. The method demonstrated an intra-observer reliability of 0.95 when assessed using Pearson’s correlation coefficient and was found to be most sensitive to changes in the cartilage tracings on the peripheries of the compartment. The articular cartilage contact area estimates at full extension were similar to those reported in the literature. The relationships between tibiofemoral articular cartilage contact area and knee flexion were also qualitatively and quantitatively similar to those previously reported. The MRI-based knee modeling method was found to have high intra-observer reliability, sensitivity to peripheral articular cartilage tracings, and agreeability with previous investigations when using data from a single healthy adult. Future studies will implement this modeling method to investigate the role that mechanical stress may play in progression of knee OA through estimation of articular cartilage contact area.

1.
Buckwalter
,
J. A.
,
Saltzman
,
C.
, and
Brown
,
T.
, 2004, “
The Impact of Osteoarthritis: Implications for Research
,”
Clin. Orthop. Relat. Res.
0009-921X,
427S
, pp.
S6
15
.
2.
Brandt
,
K. D.
,
Dieppe
,
P.
, and
Radin
,
E. L.
, 2008, “
Etiopathogenesis of Osteoarthritis
,”
Rheum. Dis. Clin. North Am.
0889-857X,
34
(
3
), pp.
531
559
.
3.
Zhao
,
D.
,
Banks
,
S. A.
,
Mitchell
,
K. H.
,
D’Lima
,
D. D.
,
Colwell
,
C. W.
, Jr.
, and
Fregly
,
B. J.
, 2007, “
Correlation Between the Knee Adduction Torque and Medial Contact Force for a Variety of Gait Patterns
,”
J. Orthop. Res.
0736-0266,
25
(
6
), pp.
789
797
.
4.
Miyazaki
,
T.
,
Wada
,
M.
,
Kawahara
,
H.
,
Sato
,
M.
,
Baba
,
H.
, and
Shimada
,
S.
, 2002, “
Dynamic Load at Baseline Can Predict Radiographic Disease Progression in Medial Compartment Knee Osteoarthritis
,”
Ann. Rheum. Dis.
0003-4967,
61
(
7
), pp.
617
622
.
5.
Fukubayashi
,
T.
, and
Kurosawa
,
H.
, 1980, “
The Contact Area and Pressure Distribution Pattern of the Knee: A Study of Normal and Osteoarthrotic Knee Joints
,”
Acta Orthop. Scand.
0001-6470,
51
(
1–6
), pp.
871
879
.
6.
Kettelkamp
,
D. B.
, and
Jacobs
,
A. W.
, 1972, “
Tibiofemoral Contact Area—Determination and Implications
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
54
(
2
), pp.
349
356
.
7.
Hinterwimmer
,
S.
,
Gotthardt
,
M.
,
von Eisenhart-Rothe
,
R.
,
Sauerland
,
S.
,
Siebert
,
M.
,
Vogl
,
T.
,
Eckstein
,
F.
, and
Graichen
,
H.
, 2005, “
In Vivo Contact Areas of the Knee in Patients With Patellar Subluxation
,”
J. Biomech.
0021-9290,
38
(
10
), pp.
2095
2101
.
8.
Shefelbine
,
S. J.
,
Ma
,
C. B.
,
Lee
,
K. Y.
,
Schrumpf
,
M. A.
,
Patel
,
P.
,
Safran
,
M. R.
,
Slavinsky
,
J. P.
, and
Majumdar
,
S.
, 2006, “
MRI Analysis of In Vivo Meniscal and Tibiofemoral Kinematics in ACL-Deficient and Normal Knees
,”
J. Orthop. Res.
0736-0266,
24
(
6
), pp.
1208
1217
.
9.
Segal
,
N. A.
,
Anderson
,
D. D.
,
Iyer
,
K. S.
,
Baker
,
J.
,
Torner
,
J. C.
,
Lynch
,
J. A.
,
Felson
,
D. T.
,
Lewis
,
C. E.
, and
Brown
,
T. D.
, 2009, “
Baseline Articular Contact Stress Levels Predict Incident Symptomatic Knee Osteoarthritis Development in the MOST Cohort
,”
J. Orthop. Res.
0736-0266,
27
(
12
), pp.
1562
1568
.
10.
Besier
,
T. F.
,
Draper
,
C. E.
,
Gold
,
G. E.
,
Beaupré
,
G. S.
, and
Delp
,
S. L.
, 2005, “
Patellofemoral Joint Contact Area Increases With Knee Flexion and Weight-Bearing
,”
J. Orthop. Res.
0736-0266,
23
(
2
), pp.
345
350
.
11.
Gold
,
G. E.
,
Besier
,
T. F.
,
Draper
,
C. E.
,
Asakawa
,
D. S.
,
Delp
,
S. L.
, and
Beaupre
,
G. S.
, 2004, “
Weight-Bearing MRI of Patellofemoral Joint Cartilage Contact Area
,”
J. Magn. Reson Imaging
1053-1807,
20
(
3
), pp.
526
530
.
12.
Patel
,
V. V.
,
Hall
,
K.
,
Ries
,
M.
,
Lotz
,
J.
,
Ozhinsky
,
E.
,
Lindsey
,
C.
,
Lu
,
Y.
, and
Majumdar
,
S.
, 2004, “
A Three-Dimensional MRI Analysis of Knee Kinematics
,”
J. Orthop. Res.
0736-0266,
22
(
2
), pp.
283
292
.
13.
Barrance
,
P.
,
Pepe
,
T. M.
, and
Buchanan
,
T. S.
, 2005, “
In Vivo Kinematics Measured in Weight-Bearing Flexion Using Standing Magnetic Resonance Imaging
,”
Proceedings of the 2005 Summer Bioengineering Conference
, Vail, CO.
14.
Barrance
,
P. J.
, and
Buchanan
,
T. S.
, 2006, “
Knee Cartilage Contact Determination Using Weightbearing MRI
,”
Proceedings of the 2006 Summer Bioengineering Conference
, Amelia Island, FL.
15.
Barrance
,
P. J.
,
Benoit
,
D. L.
,
Twomey
,
J.
, and
Buchanan
,
T. S.
, 2006, “
MRI-Based Modeling of Changes in Knee Positioning and Cartilage Contact Related to Injury and Weightbearing
,”
Proceedings of the 2006 World Congress of Biomechanics
, Munich, Germany.
16.
Barrance
,
P.
,
Pohl
,
M.
,
Noehren
,
B.
,
Barrios
,
J.
, and
Davis
,
I.
, 2007, “
Bone Surface Tracking for Standing Knee MRI: A Validation Study
,”
Proceedings of the 2007 American Society of Biomechanics Annual Conference
, Stanford, CA, pp.
1
10
.
17.
Kremer
,
J. R.
,
Mastronarde
,
D. N.
, and
McIntosh
,
J. R.
, 1996, “
Computer Visualization of Three-Dimensional Image Data Using IMOD
,”
J. Struct. Biol.
1047-8477,
116
(
1
), pp.
71
76
.
18.
Grood
,
E. S.
, and
Suntay
,
W. J.
, 1983, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
0148-0731,
105
(
2
), pp.
136
144
.
19.
Périé
,
D.
, and
Hobatho
,
M. C.
, 1998, “
In Vivo Determination of Contact Areas and Pressure of the Femorotibial Joint Using Non-Linear Finite Element Analysis
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
13
(
6
), pp.
394
402
.
You do not currently have access to this content.