In this paper, we review existing clinical research data on post-endovascular repair (EVAR) intrasac pressure and relation with abdominal aortic aneurysm (AAA) size changes. Based on the review, we hypothesize that intrasac pressure has a significant impact on post-EVAR AAA size changes, and post-EVAR remodeling depends also on how the pressure has changed over a period of time. The previously developed model of an AAA based on a constrained mixture approach is extended to include vascular adaptation after EVAR using an idealized geometry. Computational simulation shows that the same mechanism of collagen stress-mediated remodeling in AAA expansion induces the aneurysm wall to shrink in a reduced sac-pressure after post-EVAR. Computational simulation suggests that the intrasac pressure of 60mmHg is a critical value. At this value, the AAA remains stable, while values above cause the AAA to expand and values below cause the AAA to shrink. There are, however, variations between individuals due to different cellular sensitivities in stress-mediated adaptation. Computer simulation also indicates that an initial decrease in intrasac pressure helps the AAA shrink even if the pressure increases after some time. The presented study suggests that biomechanics has a major effect on initial adaptation after EVAR and also illustrates the utility of a computational model of vascular growth and remodeling in predicting diameter changes during the progression and after the treatment of AAAs.

1.
Buth
,
J.
, and
Laheij
,
R. J. F.
, 2000, “
Early Complications and Endoleaks After Endovascular Abdominal Aortic Aneurysm Repair: Report of a Multicenter Study
,”
J. Vasc. Surg.
0741-5214,
31
, pp.
134
146
.
2.
Zarins
,
C. K.
,
Bloch
,
D. A.
,
Crabtree
,
T.
,
Matsumoto
,
A. H.
,
White
,
R. A.
, and
Fogarty
,
T. J.
, 2003, “
Stent Graft Migration After Endovascular Aneurysm Repair: Importance of Proximal Fixation
,”
J. Vasc. Surg.
0741-5214,
38
, pp.
1264
1272
.
3.
Watton
,
P. N.
,
Hill
,
N. A.
, and
Heil
,
M.
, 2004, “
A Mathematical Model for the Growth of the Abdominal Aortic Aneurysm
,”
Biomech. Model. Mechanobiol.
1617-7959,
3
, pp.
98
113
.
4.
Watton
,
P. N.
, and
Hill
,
N. A.
, 2009, “
Evolving Mechanical Properties of a Model of Abdominal Aortic Aneurysm
,”
Biomech. Model. Mechanobiol.
1617-7959,
8
, pp.
25
42
.
5.
Zeinali-Davarani
,
S.
,
Sheidaei
,
A.
, and
Baek
,
S.
, 2010, “
A Finite Element Model of Stress-Mediated Vascular Adaptation: Application to Abdominal Aortic Aneurysms
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842, in press.
6.
Sheidaei
,
A.
,
Hunley
,
S. C.
,
Zeinali-Davarani
,
S.
,
Raguin
,
L. G.
, and
Baek
,
S.
, 2010, “
Simulation of Abdominal Aortic Aneurysm Growth With Updating Hemodynamic Loads Using a Realistic Geometry
,”
Med. Eng. Phys.
1350-4533, in press.
7.
Chuter
,
T.
,
Ivancev
,
K.
,
Malina
,
M.
,
Resch
,
T.
,
Brunkwall
,
J.
,
Lindblad
,
B.
, and
Risberg
,
B.
, 1997, “
Aneurysm Pressure Following Endovascular Exclusion
,”
Eur. J. Vasc. Endovasc Surg.
1078-5884,
13
, pp.
85
87
.
8.
Dias
,
N. V.
,
Ivancev
,
K.
,
Malina
,
M.
,
Resch
,
T.
,
Lindblad
,
B.
, and
Sonesson
,
B.
, 2004, “
Intra-Aneurysm Sac Pressure Measurements After Endovascular Aneurysm Repair: Differences Between Shrinking, Unchanged, and Expanding Aneurysms With and Without Endoleaks
,”
J. Vasc. Surg.
0741-5214,
39
, pp.
1229
1235
.
9.
Dias
,
N. V.
,
Ivancev
,
K.
,
Malina
,
M.
,
Hinnen
,
J. -W.
,
Visser
,
M.
,
Lindblad
,
B.
, and
Sonesson
,
B.
, 2004, “
Direct Intra-Aneurysm Sac Pressure Measurement Using Tip-Pressure Sensors: In Vivo and In Vitro Evaluation
,”
J. Vasc. Surg.
0741-5214,
40
, pp.
711
716
.
10.
Dias
,
N. V.
,
Ivancev
,
K.
,
Resch
,
T. A.
,
Malina
,
M.
, and
Sonesson
,
B.
, 2007, “
Endoleaks After Endovascular Aneurysm Repair Lead to Nonuniform Intra-Aneurysm Sac Pressure
,”
J. Vasc. Surg.
0741-5214,
46
, pp.
197
203
.
11.
Ellozy
,
S. H.
,
Carroccio
,
A.
,
Lookstein
,
R. A.
,
Jacobs
,
T. S.
,
Addis
,
M. D.
,
Teodorescu
,
V. J.
, and
Marin
,
M. L.
, 2006, “
Abdominal Aortic Aneurysm Sac Shrinkage After Endovascular Aneurysm Repair: Correlation With Chronic Sac Pressure Measurement
,”
J. Vasc. Surg.
0741-5214,
43
, pp.
2
7
.
12.
Gawenda
,
M.
,
Heckenkamp
,
J.
,
Zaehringer
,
M.
, and
Brunkwall
,
J.
, 2002, “
Intra-Aneurysm Sac Pressure—The Holy Grail of Endoluminal Grafting of AAA
,”
Eur. J. Vasc. Endovasc Surg.
1078-5884,
24
, pp.
139
145
.
13.
Ohki
,
T.
,
Ouriel
,
K.
,
Silveira
,
P. G.
,
Katzen
,
B.
,
White
,
R.
,
Criado
,
F.
, and
Diethrich
,
E.
, 2007, “
Initial Results of Wireless Pressure Sensing for Endovascular Aneurysm Repair: The APEX Trial—Acute Pressure Measurement to Confirm Aneurysm Sac EXclusion
,”
J. Vasc. Surg.
0741-5214,
45
, pp.
236
242
.
14.
Sonesson
,
B.
,
Dias
,
N.
,
Malina
,
M.
,
Olofsson
,
P.
,
Griffin
,
D.
,
Lindblad
,
B.
, and
Ivancev
,
K.
, 2003, “
Intra-Aneurysm Pressure Measurements in Successfully Excluded Abdominal Aortic Aneurysm After Endovascular Repair
,”
J. Vasc. Surg.
0741-5214,
37
, pp.
733
738
.
15.
Veith
,
F. J.
,
Baum
,
R. A.
,
Ohki
,
T.
,
Amor
,
M.
,
Adiseshiah
,
M.
,
Blankensteijn
,
J. D.
,
Buth
,
J.
,
Chuter
,
T. A. M.
,
Fairman
,
R. M.
,
Gilling-Smith
,
G.
,
Harris
,
P. L.
,
Hodgson
,
K. J.
,
Hopkinson
,
B. R.
,
Ivancev
,
K.
,
Katzen
,
B. T.
,
Lawrence-Brown
,
M.
,
Meier
,
G. H.
,
Malina
,
M.
,
Makaroun
,
M. S.
,
Parodi
,
J. C.
,
Richter
,
G. M.
,
Rubin
,
G. D.
,
Stelter
,
W. J.
,
White
,
G. H.
,
White
,
R. A.
,
Wisselink
,
W.
, and
Zarins
,
C. K.
, 2002, “
Nature and Significance of Endoleaks and Endotension: Summary of Opinions Expressed at an International Conference
,”
J. Vasc. Surg.
0741-5214,
35
, pp.
1029
1035
.
16.
Chaikof
,
E. L.
,
Blankensteijn
,
J. D.
,
Harris
,
P. L.
,
White
,
G. H.
,
Zarins
,
C. K.
,
Bernhard
,
V. M.
,
Matsumura
,
J. S.
,
May
,
J.
,
Veith
,
F. J.
,
Fillinger
,
M. F.
,
Rutherford
,
R. B.
, and
Craig Kent
,
K.
, 2002, “
Reporting Standards for Endovascular Aortic Aneurysm Repair
,”
J. Vasc. Surg.
0741-5214,
35
, pp.
1048
1060
.
17.
Ellozy
,
S. H.
,
Carroccio
,
A.
,
Lookstein
,
R. A.
,
Minor
,
M. E.
,
Sheahan
,
C. M.
,
Juta
,
J.
,
Cha
,
A.
,
Valenzuela
,
R.
,
Addis
,
M. D.
,
Jacobs
,
T. S.
,
Teodorescu
,
V. J.
, and
Marin
,
M. L.
, 2004, “
First Experience in Human Beings With a Permanently Implantable Intrasac Pressure Transducer for Monitoring Endovascular Repair of Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
0741-5214,
40
, pp.
405
412
.
18.
Baum
,
R. A.
,
Carpenter
,
J. P.
,
Cope
,
C.
,
Golden
,
M. A.
,
Velazquez
,
O. C.
,
Neschis
,
D. G.
,
Mitchell
,
M. E.
,
Barker
,
C. F.
, and
Fairman
,
R. M.
, 2001, “
Aneurysm Sac Pressure Measurements After Endovascular Repair of Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
0741-5214,
33
, pp.
32
41
.
19.
Zeinali-Davarani
,
S.
,
Raguin
,
L. G.
,
Vorp
,
D. A.
, and
Baek
,
S.
, 2011, “
Identification of In Vivo Material and Geometric Parameters of a Human Aorta: Towards Patient-Specific Modeling of Abdominal Aortic Aneurysm
,”
Biomech. Model. Mechanobiol.
1617-7959, in press.
20.
Vande Geest
,
J. P.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
, 2006, “
The Effects of Aneurysm on the Biaxial Mechanical Behavior of Human Abdominal Aorta
,”
J. Biomech.
0021-9290,
39
, pp.
1324
1334
.
21.
Figueroa
,
C. A.
,
Baek
,
S.
,
Taylor
,
C. A.
, and
Humphrey
,
J. D.
, 2009, "
A Computational Framework for Coupled Fluid-Solid Growth in Cardiovascular Simulations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
198
, pp.
3583
3602
.
22.
Bernstein
,
E. F.
,
Dilley
,
R. B.
,
Goldberger
,
L. E.
,
Gosink
,
B. B.
, and
Leopold
,
G. R.
, 1976, “
Growth Rates of Small Abdominal Aortic Aneurysms
,”
Surgery (St. Louis)
0039-6060,
80
(
6
), pp.
765
773
.
23.
Brady
,
A. R.
,
Thompson
,
S. G.
,
Fowkes
,
F. G. R.
,
Greenhalgh
,
R. M.
, and
Powell
,
J. T.
, 2004, “
Abdominal Aortic Aneurysm Expansion: Risk Factors and Time Intervals for Surveillance
,”
Circulation
0009-7322,
110
, pp.
16
21
.
24.
Baek
,
S.
,
Rajagopal
,
K. R.
, and
Humphrey
,
J. D.
, 2006, “
A Theoretical Model of Enlarging Intracranial Fusiform Aneurysms
,”
ASME J. Biomech. Eng.
0148-0731,
128
, pp.
142
149
.
25.
Humphrey
,
J. D.
, 2008, “
Vascular Adaptation and Mechanical Homeostasis at Tissue, Cellular, and Sub-Cellular Levels
,”
Cell Biochem. Biophys.
1085-9195,
50
, pp.
53
78
.
26.
Ruberti
,
J. W.
, and
Hallab
,
N. J.
, 2005, “
Strain-Controlled Enzymatic Cleavage of Collagen in Loaded Matrix
,”
Biochem. Biophys. Res. Commun.
0006-291X,
336
, pp.
483
489
.
27.
Flynn
,
B. P.
,
Bhole
,
A. P.
,
Saeidi
,
N.
,
Liles
,
M.
,
DiMarzio
,
C. A.
,
Ruberti
,
J. W.
, and
Orgel
,
J. P. R. O.
, 2010, “
Mechanical Strain Stabilizes Reconstituted Collagen Fibrils Against Enzymatic Degradation by Mammalian Collagenase Matrix Metalloproteinase 8 (MMP-8)
,”
PLoS ONE
1932-6203,
5
, p.
e12337
.
28.
Valentín
,
A.
,
Cardamone
,
L.
,
Baek
,
S.
, and
Humphrey
,
J. D.
, 2009, “
Complementary Vasoactivity and Matrix Remodelling in Arterial Adaptations to Altered Flow and Pressure
,”
J. R. Soc., Interface
1742-5689,
6
, pp.
293
306
.
29.
Sampaio
,
S. M.
,
Panneton
,
J. M.
,
Mozes
,
G. I.
,
Andrews
,
J. C.
,
Bower
,
T. C.
,
Kalra
,
M.
,
Cherry
,
K. J.
,
Sullivan
,
T.
, and
Gloviczki
,
P.
, 2005, “
Aneurysm Sac Thrombus Load Predicts Type II Endoleaks After Endovascular Aneurysm Repair
,”
Ann. Vasc. Surg.
0890-5096,
19
, pp.
302
309
.
30.
Curci
,
J. A.
, 2009, “
Digging in the ‘Soil’ of the Aorta to Understand the Growth of Abdominal Aortic Aneurysms
,”
Vascular
,
17
, pp.
S21
S29
.
31.
Diehm
,
N.
,
Dick
,
F.
,
Katzen
,
B. T.
,
Do
,
D. -D.
, and
Baumgartner
,
I.
, 2009, “
Endovascular Repair of Abdominal Aortic Aneurysms: Only a Mechanical Solution for a Biological Problem?
,”
J. Endovasc. Ther.
1526-6028,
16
, pp.
I
-119–I-
126
.
You do not currently have access to this content.