With motion-sparing disk replacement implants gaining popularity as an alternative to anterior cervical discectomy and fusion (ACDF) for the treatment of certain spinal degenerative disorders, recent laboratory investigations have studied the effects of disk replacement and implant design on spinal kinematics and kinetics. Particularly relevant to cervical disk replacement implant design are any postoperative changes in solid stresses or contact conditions in the articular cartilage of the posterior facets, which are hypothesized to lead to adjacent-level degeneration. Such changes are commonly investigated using finite element methods, but significant simplification of the articular geometry is generally employed. The impact of such geometric representations has not been thoroughly investigated. In order to assess the effects of different models of cartilage geometry on load transfer and contact pressures in the lower cervical spine, a finite element model was generated using cadaver-based computed tomography imagery. Mesh resolution was varied in order to establish model convergence, and cadaveric testing was undertaken to validate model predictions. The validated model was altered to include four different geometric representations of the articular cartilage. Model predictions indicate that the two most common representations of articular cartilage geometry result in significant reductions in the predictive accuracy of the models. The two anatomically based geometric models exhibited less computational artifact, and relatively minor differences between them indicate that contact condition predictions of spatially varying thickness models are robust to anatomic variations in cartilage thickness and articular curvature. The results of this work indicate that finite element modeling efforts in the lower cervical spine should include anatomically based and spatially varying articular cartilage thickness models. Failure to do so may result in loss of fidelity of model predictions relevant to investigations of physiological import.

1.
Brolin
,
K.
, and
Halldin
,
P.
, 2004, “
Development of a Finite Element Model of the Upper Cervical Spine and a Parameter Study of Ligament Characteristics
,”
Spine
0362-2436,
29
(
4
), pp.
376
385
.
2.
Ha
,
S. K.
, 2006, “
Finite Element Modeling of Multi-Level Cervical Spinal Segments (C3-C6) and Biomechanical Analysis of an Elastomer-Type Prosthetic Disc
,”
Med. Eng. Phys.
1350-4533,
28
(
6
), pp.
534
541
.
3.
Yoganandan
,
N.
,
Kumaresan
,
S.
,
Voo
,
L.
, and
Pintar
,
F.
, 1996, “
Finite Element Applications in Human Cervical Spine Modeling
,”
Spine
0362-2436,
21
(
15
), pp.
1824
1834
.
4.
Clausen
,
J. D.
,
Goel
,
V. K.
,
Traynelis
,
V. C.
, and
Scifert
,
J.
, 1997, “
Uncinate Processes and Luschka Joints Influence The Biomechanics of the Cervical Spine: Quantification Using a Finite Element Model of the C5-C6 Segment
,”
J. Orthop. Res.
0736-0266,
15
(
3
), pp.
342
347
.
5.
Natarajan
,
R. N.
,
Williams
,
J. R.
, and
Andersson
,
G. B.
, 2004, “
Recent Advances in Analytical Modeling of Lumbar Disc Degeneration
,”
Spine
0362-2436,
29
(
23
), pp.
2733
2741
.
6.
Kumaresan
,
S.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
, 1999, “
Finite Element Analysis of the Cervical Spine: A Material Property Sensitivity Study
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
14
(
1
), pp.
41
53
.
7.
del Palomar
,
A. P.
,
Calvo
,
B.
, and
Doblare
,
M.
, 2008, “
An Accurate Finite Element Model of the Cervical Spine Under Quasi-Static Loading
,”
J. Biomech.
0021-9290,
41
(
3
), pp.
523
531
.
8.
Noailly
,
J.
,
Lacroix
,
D.
, and
Planell
,
J. A.
, 2005, “
Finite Element Study of a Novel Intervertebral Disc Substitute
,”
Spine
0362-2436,
30
(
20
), pp.
2257
2264
.
9.
Rohlmann
,
A.
,
Bauer
,
L.
,
Zander
,
T.
,
Bergmann
,
G.
, and
Wilke
,
H. J.
, 2006, “
Determination of Trunk Muscle Forces for Flexion and Extension by Using a Validated Finite Element Model of the Lumbar Spine and Measured In Vivo Data
,”
J. Biomech.
0021-9290,
39
(
6
), pp.
981
989
.
10.
Sharma
,
M.
,
Langrana
,
N. A.
, and
Rodriguez
,
J.
, 1995, “
Role of Ligaments and Facets in Lumbar Spinal Stability
,”
Spine
0362-2436,
20
(
8
), pp.
887
900
.
11.
Teo
,
E. C.
, and
Ng
,
H. W.
, 2001, “
Evaluation of the Role of Ligaments, Facets and Disc Nucleus in Lower Cervical Spine Under Compression and Sagittal Moments Using Finite Element Method
,”
Med. Eng. Phys.
1350-4533,
23
(
3
), pp.
155
164
.
12.
Womack
,
W.
,
Woldtvedt
,
D.
, and
Puttlitz
,
C. M.
, 2008, “
Lower Cervical Spine Facet Cartilage Thickness Mapping
,”
Osteoarthritis Cartilage
1063-4584,
16
(
9
), pp.
1018
1023
.
13.
Onan
,
O. A.
,
Hipp
,
J. A.
, and
Heggeness
,
M. H.
, 1998, “
Use of Computed Tomography Image Processing for Mapping of Human Cervical Facet Surface Geometry
,”
Med. Eng. Phys.
1350-4533,
20
(
1
), pp.
77
81
.
14.
Saito
,
T.
,
Yamamuro
,
T.
,
Shikata
,
J.
,
Oka
,
M.
, and
Tsutsumi
,
S.
, 1991, “
Analysis and Prevention of Spinal Column Deformity Following Cervical Laminectomy, Pathogenetic Analysis of Post Laminectomy Deformities
,”
Spine
0362-2436,
16
(
5
), pp.
494
502
.
15.
Rho
,
J. Y.
,
Hobatho
,
M. C.
, and
Ashman
,
R. B.
, 1995, “
Relations of Mechanical Properties to Density and CT Numbers in Human Bone
,”
Med. Eng. Phys.
1350-4533,
17
(
5
), pp.
347
355
.
16.
Bowden
,
A. E.
,
Guerin
,
H. L.
,
Villaraga
,
M. L.
,
Patwardhan
,
A. G.
, and
Ochoa
,
J. A.
, 2008, “
Quality of Motion Considerations in Numerical Analysis of Motion Restoring Implants of the Spine
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
23
(
5
), pp.
536
544
.
17.
Schinagl
,
R. M.
,
Gurskis
,
D.
,
Chen
,
A. C.
, and
Sah
,
R. L.
, 1997, “
Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage
,”
J. Orthop. Res.
0736-0266,
15
(
4
), pp.
499
506
.
18.
Serhan
,
H. A.
,
Varnavas
,
G.
,
Dooris
,
A. P.
,
Patwardhan
,
A.
, and
Tzermiadianos
,
M.
, 2007, “
Biomechanics of the Posterior Lumbar Articulating Elements
,”
Neurosurg. Focus
,
22
(
1
), pp.
1
6
.
19.
Mow
,
V. C.
,
Gu
,
W. Y.
, and
Chen
,
F. H.
, 2005, “
Structure and Function of Articular Cartilage and Meniscus
,”
Basic Orthopaedic Biomechanics and Mechano-Biology
,
V. C.
Mow
and
R.
Huiskes
, eds.,
Lippincott Williams, Wilkins
,
Philadelphia, PA
, pp.
196
197
.
20.
Yoganandan
,
N.
,
Knowles
,
S. A.
,
Maiman
,
D. J.
, and
Pintar
,
F. A.
, 2003, “
Anatomic Study of the Morphology of Human Cervical Facet Joint
,”
Spine
0362-2436,
28
(
20
), pp.
2317
2323
.
21.
Klisch
,
S. M.
, 2006, “
A Bimodular Theory for Finite Deformations: Comparison of Orthotropic Second-Order and Exponential Stress Constitutive Equations for Articular Cartilage
,”
Biomech. Model. Mechanobiol.
1617-7959,
5
(
2–3
), pp.
90
101
.
22.
Fagan
,
M. J.
,
Julian
,
S.
,
Siddall
,
D. J.
, and
Mohsen
,
A. M.
, 2002, “
Patient-Specific Spine Models. Part 1: Finite Element Analysis of the Lumbar Intervertebral Disc—A Material Sensitivity Study
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
216
(
5
), pp.
299
314
.
23.
Mercer
,
S. R.
, and
Jull
,
G. A.
, 1996, “
Morphology of the Cervical Intervertebral Disc: Implications for Mckenzie’s Model of the Disc Derangement Syndrome
,”
Man. Ther.
,
1
(
2
), pp.
76
81
.
24.
Pooni
,
J. S.
,
Hukins
,
D. W.
,
Harris
,
P. F.
,
Hilton
,
R. C.
, and
Davies
,
K. E.
, 1986, “
Comparison of the Structure of Human Intervertebral Disks in the Cervical, Thoracic and Lumbar Regions of the Spine
,”
Surg. Radiol. Anat.
0930-1038,
8
(
3
), pp.
175
182
.
25.
Guo
,
Z.
,
Peng
,
X.
, and
Moran
,
B.
, 2007, “
Large Deformation Response of a Hyperelastic Fibre Reinforced Composite: Theoretical Model and Numerical Validation
,”
Composites, Part A
1359-835X,
38
(
8
), pp.
1842
1851
.
26.
Wagner
,
D.
, and
Lotz
,
J.
, 2004, “
Theoretical Model and Experimental Results for the Nonlinear Elastic Behavior of Human Annulus Fibrosus
,”
J. Orthop. Res.
0736-0266,
22
(
4
), pp.
901
909
.
27.
Keller
,
T. S.
,
Collocoa
,
C. J.
,
Harrison
,
D. E.
,
Harrison
,
D. D.
, and
Janik
,
T. J.
, 2005, “
Influence of Spine Morphology on Intervertebral Disc Loads and Stresses in Asymptomatic Adults: Implications for the Ideal Spine
,”
Spine J.
,
5
(
3
), pp.
297
309
.
28.
Ayturk
,
U. M.
,
Garcia
,
J. J.
, and
Puttlitz
,
C. M.
, 2010, “
The Micromechanical Role of the Annulus Fibrosus Components Under Physiological Loading of the Lumbar Spine
,”
ASME J. Biomech. Eng.
0148-0731,
132
, p.
061007
.
29.
Ayturk
,
U. M.
, and
Puttlitz
,
C. M.
, “
Parametric Convergence Sensitivity and Validation of a Finite Element Model of Human Lumbar Spine
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842, in press.
30.
Yoganandan
,
N.
,
Kumaresan
,
S.
, and
Pintar
,
F.
, 2001, “
Biomechanics of the Cervical Spine. Part 2. Cervical Spine Soft Tissue Responses and Biomechanical Modeling
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
16
(
1
), pp.
1
27
.
31.
Nachemson
,
A. L.
, and
Evans
,
J. H.
, 1968, “
Some Mechanical Properties of the Third Human Lumbar Interlaminar Ligament (Ligamentum Flavum)
,”
J. Biomech.
0021-9290,
1
(
3
), pp.
211
220
.
32.
Womack
,
W.
, 2009, “
Computational Modeling of the Lower Cervical Spine: Facet Cartilage Distribution and Disc Replacement
,” Ph.D. thesis, Colorado State University, Fort Collins, CO.
33.
2008, ABAQUS Analysis User’s Manual (ver. 6.8), Dassault Systèmes Simulia Corp., Providence, RI.
34.
Klisch
,
S. M.
,
Asanbaeva
,
A.
,
Oungoulian
,
S. R.
,
Masuda
,
K.
,
Thonar
,
E. J.
,
Davol
,
A.
, and
Sah
,
R. L.
, 2008, “
A Cartilage Growth Mixture Model With Collagen Remodeling: Validation Protocols
,”
ASME J. Biomech. Eng.
0148-0731,
130
(
3
), p.
031006
.
35.
Thomas
,
G. C.
,
Asanbaeva
,
A.
,
Vena
,
P.
,
Sah
,
R. L.
, and
Klisch
,
S. M.
, 2009, “
A Nonlinear Constituent Based Viscoelastic Model for Articular Cartilage and Analysis of Tissue Remodeling Due to Altered Glycosaminoglycan-Collagen Interactions
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
10
), p.
101002
.
You do not currently have access to this content.