The relationship between microstructural features and macroscopic mechanical properties of engineered tissues was investigated in pure and mixed composite scaffolds consisting of collagen Type I and fibrin proteins containing embedded smooth muscle cells. In order to vary the matrix microstructure, fibrin polymerization in mixed constructs was initiated using either the blood-derived enzyme thrombin or the snake venom-derived enzyme ancrod, each at low and high concentrations. Microstructural features of the matrix were quantified by analysis of high resolution scanning electron micrographs. Mechanical properties of the scaffolds were assessed by uniaxial tensile testing as well as creep testing. Viscoelastic parameters were determined by fitting creep data to Burger’s four-parameter model. Oscillatory dynamic mechanical testing was used to determine the storage modulus, loss modulus, and phase shift of each matrix type. Mixed composite scaffolds exhibited improved tensile stiffness and strength, relative to pure collagen matrices, as well as decreased deformation and slower relaxation in creep tests. Storage and loss moduli were increased in mixed composites compared with pure collagen, while phase shift was reduced. A correlation analysis showed that the number of fiber bundles per unit volume was positively correlated with matrix modulus, strength, and dynamic moduli, though this parameter was negatively correlated with phase shift. Fiber diameter also was negatively correlated with scaffold strength. This study demonstrates how microstructural features can be related to the mechanical function of protein matrices and provides insight into structure-function relationships in such materials. This information can be used to identify and promote desirable microstructural features when designing biomaterials and engineered tissues.

1.
Lin
,
A. S.
,
Barrows
,
T. H.
,
Cartmell
,
S. H.
, and
Guldberg
,
R. E.
, 2003, “
Microarchitectural and Mechanical Characterization of Oriented Porous Polymer Scaffolds
,”
Biomaterials
0142-9612,
24
(
3
), pp.
481
489
.
2.
Engelmayr
,
G. C.
, and
Sacks
,
M. S.
, 2006, “
A Structural Model for the Flexural Mechanics of Nonwoven Tissue Engineering Scaffolds
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
4
), pp.
610
622
.
3.
Thomopoulos
,
S.
,
Fomovsky
,
G. M.
, and
Holmes
,
J. W.
, 2005, “
The Development of Structural and Mechanical Anisotropy in Fibroblast Populated Collagen Gels
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
5
), pp.
742
750
.
4.
Wang
,
D. H.
,
Makaroun
,
M.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
, 2001, “
Mechanical Properties and Microstructure of Intraluminal Thrombus From Abdominal Aortic Aneurysm
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
6
), pp.
536
539
.
5.
Stylianopoulos
,
T.
, and
Barocas
,
V. H.
, 2007, “
Multiscale, Structure-Based Modeling for the Elastic Mechanical Behavior of Arterial Walls
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
4
), pp.
611
618
.
6.
Sokolis
,
D. P.
,
Kefaloyannis
,
E. M.
,
Kouloukoussa
,
M.
,
Marinos
,
E.
,
Boudoulas
,
H.
, and
Karayannacos
,
P. E.
, 2006, “
A Structural Basis for the Aortic Stress-Strain Relation in Uniaxial Tension
,”
J. Biomech.
0021-9290,
39
, pp.
1651
62
.
7.
Roeder
,
B. A.
,
Kokini
,
K.
,
Sturgis
,
J. E.
,
Robinson
,
J. P.
, and
Voytik-Harbin
,
S. L.
, 2002, “
Tensile Mechanical Properties of Three-Dimensional Type I Collagen Extracellular Matrices With Varied Microstructure
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
2
), pp.
214
22
.
8.
Stuart
,
K.
, and
Panitch
,
A.
, 2008, “
Influence of Chondroitin Sulfate on Collagen Gel Structure and Mechanical Properties at Physiologically Relevant Levels
,”
Biopolymers
0006-3525,
89
, pp.
841
51
.
9.
Rowe
,
S. L.
, and
Stegemann
,
J. P.
, 2006, “
Interpenetrating Collagen-Fibrin Composite Matrices With Varying Protein Contents and Ratios
,”
Biomacromolecules
1525-7797,
7
(
11
), pp.
2942
2948
.
10.
Cummings
,
C. L.
,
Gawlitta
,
D.
,
Nerem
,
R. M.
, and
Stegemann
,
J. P.
, 2004, “
Properties of Engineered Vascular Constructs Made From Collagen, Fibrin, and Collagen-Fibrin Mixtures
,”
Biomaterials
0142-9612,
25
(
17
), pp.
3699
3706
.
11.
Liu
,
J. Y.
,
Swartz
,
D. D.
,
Peng
,
H. F.
,
Gugino
,
S. F.
,
Russell
,
J. A.
, and
Andreadis
,
S. T.
, 2007, “
Functional Tissue-Engineered Blood Vessels From Bone Marrow Progenitor Cells
,”
Cardiovasc. Res.
0008-6363,
75
(
3
), pp.
618
628
.
12.
Isenberg
,
B. C.
,
Williams
,
C.
, and
Tranquillo
,
R. T.
, 2006, “
Small-Diameter Artificial Arteries Engineered In Vitro
,”
Circ. Res.
0009-7330,
98
(
1
), pp.
25
35
.
13.
Mosesson
,
M.
,
Siebenlist
,
K.
, and
Meh
,
D.
, 2001, “
The Structure and Biological Features of Fibrinogen and Fibrin
,”
Ann. N. Y. Acad. Sci.
,
936
, pp.
11
30
. 0077-8923
14.
Marsh
,
N.
, and
Williams
,
V.
, 2005, “
Practical Applications of Snake Venom Toxins in Haemostasis
,”
Toxicon
0041-0101,
45
, pp.
1171
81
.
15.
Castro
,
H.
,
Zingali
,
R.
,
Albuquerque
,
M.
,
Pujol-Luz
,
M.
, and
Rodrigues
,
C.
, 2004, “
Snake Venom Thrombin-Like Enzymes: From Reptilase to Now
,”
Cell. Mol. Life Sci.
1420-682X,
61
, pp.
843
856
.
16.
Illig
,
K.
, and
Ouriel
,
K.
, 1996, “
Ancrod: Understanding the Agent
,”
Semin Vasc. Surg.
0895-7967,
9
, pp.
303
314
.
17.
Shen
,
L.
,
Hermans
,
J.
,
McDonagh
,
J.
, and
McDonagh
,
R.
, 1977, “
Role of Fibrinopeptide B Release: Comparison of Fibrins Produced by Thrombin and Ancrod
,”
Am. J. Physiol.
0002-9513,
232
, pp.
H629
633
.
18.
Berglund
,
J.
,
Nerem
,
R.
, and
Sambanis
,
A.
, 2005, “
Viscoelastic Testing Methodologies for Tissue Engineered Blood Vessels
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
1176
1184
.
19.
Gentleman
,
E.
,
Livesay
,
G. A.
,
Dee
,
K. C.
, and
Nauman
,
E. A.
, 2006, “
Development of Ligament-Like Structural Organization and Properties in Cell-Seeded Collagen Scaffolds In Vitro
,”
Ann. Biomed. Eng.
0090-6964,
34
(
5
), pp.
726
36
.
20.
Krishnan
,
L.
,
Weiss
,
J.
,
Wessman
,
M.
, and
Hoying
,
J.
, 2004, “
Design and Application of a Test System for Viscoelastic Characterization of Collagen Gels
,”
Tissue Eng.
1076-3279,
10
, pp.
241
252
.
21.
Mavrilas
,
D.
,
Sinouris
,
E.
,
Vynios
,
D.
, and
Papageorgakopoulou
,
N.
, 2005, “
Dynamic Mechanical Characteristics of Intact and Structurally Modified Bovine Pericardial Tissues
,”
J. Biomech.
0021-9290,
38
, pp.
761
768
.
22.
Ferry
,
J.
, and
Morrison
,
P.
, 1947, “
Preparation and Properties of Serum and Plasma Proteins. VII. The Conversion of Human Fibrinogen to Fibrin Under Various Conditions
,”
J. Am. Chem. Soc.
0002-7863,
69
, pp.
388
400
.
23.
Bale
,
M.
, and
Mosher
,
D.
, 1986, “
Effects of Thrombospondin on Fibrin Polymerization and Structure
,”
J. Biol. Chem.
0021-9258,
261
, pp.
862
868
.
24.
Rowe
,
S. L.
,
Lee
,
S. Y.
, and
Stegemann
,
J. P.
, 2007, “
Influence of Thrombin Concentration on the Mechanical and Morphological Properties of Cell-Seeded Fibrin Hydrogels
,”
Acta Biomater.
1742-7061,
3
, pp.
59
67
.
25.
Hennerici
,
M.
,
Kay
,
R.
,
Bogousslavsky
,
J.
,
Lenzi
,
G.
,
Verstraete
,
M.
,
Orgogozo
,
J.
, and
the ESTAT investigators
, 2006, “
Intravenous Ancrod for Acute Ischaemic Stroke in the European Stroke Treatment With Ancrod Trial: A Randomised Controlled Trial
,”
Lancet
0140-6736,
368
, pp.
1871
1878
.
26.
Chowdhury
,
S.
, and
Hubbell
,
J.
, 1996, “
Adhesion Prevention With Ancrod Released Via a Tissue-Adherent Hydrogel
,”
J. Surg. Res.
0022-4804,
61
, pp.
58
64
.
You do not currently have access to this content.