We study apparent elastic moduli of trabecular bone, which is represented, for simplicity, by a two- or three-dimensional periodic cellular network. The term “apparent” refers to the case when the region used in calculations (or specimen size) is smaller than a representative volume element and the moduli depend on the size of that region and boundary conditions. Both the bone tissue forming the network and the pores (represented by a very soft material) are assumed, for simplicity, as homogeneous, linear elastic, and isotropic. In order to investigate the effects of scale and boundary conditions on the moduli of these networks we vary the specimen size and apply four different boundary conditions: displacement, traction, mixed, and periodic. The analysis using periodic boundary conditions gives the effective moduli, while the displacement, traction, and mixed boundary conditions give apparent moduli. The apparent moduli calculated using displacement and traction boundary conditions bound the effective moduli from above and below, respectively. The larger is the size of the region used in our calculations, the closer are the bounds. Our choice of mixed boundary conditions gives results that are very close to those obtained using periodic boundary conditions. We conduct this analysis computationally using a finite element method. We also investigate the effect of mismatch in elastic moduli of bone tissue and soft fill, trabecular bone structure geometry, and bone tissue volume fraction on the apparent elastic moduli of idealized periodic models of trabecular bone. This study gives guidance on how the size of the specimen and boundary conditions (used in experiments or simulations) influence elastic moduli of cellular materials. This approach is applicable to heterogeneous materials in general.

1.
Hollister
,
S. J.
,
Brennan
,
J. M.
, and
Kikuchi
,
N.
, 1994, “
A Homogenization Sampling Procedure for Calculating Trabecular Bone Effective Stiffness and Tissue Level Stress
,”
J. Biomech.
0021-9290,
27
, pp.
433
444
.
2.
van Rietbergen
,
B.
,
Weinans
,
H.
,
Huiskes
,
R.
, and
Odgaard
,
A.
, 1995, “
A New Method to Determine Trabecular Bone Elastic Properties and Loading Using Micromechanical Finite-Element Models
,”
J. Biomech.
0021-9290,
28
, pp.
69
81
.
3.
van Rietbergen
,
B.
,
Odgaard
,
A.
,
Kabel
,
J.
, and
Huiskes
,
R.
, 1996, “
Direct Mechanics Assessment of Elastic Symmetries and Properties of Trabecular Bone Architecture
,”
J. Biomech.
0021-9290,
29
, pp.
1653
1657
.
4.
van Rietbergen
,
B.
,
Odgaard
,
A.
,
Kabel
,
J.
, and
Huiskes
,
R.
, 1998, “
Relationships Between Bone Morphology and Bone Elastic Properties Can Be Accurately Quantified Using High-Resolution Computer Reconstructions
,”
J. Orthop. Res.
0736-0266,
16
, pp.
23
28
.
5.
Niebur
,
G. L.
,
Yuen
,
J. C.
,
Hsia
,
A. C.
, and
Keaveny
,
T. M.
, 1999, “
Convergence Behavior of High-Resolution Finite Element Models of Trabecular Bone
,”
ASME J. Biomed. Eng.
,
121
, pp.
629
635
. 0141-5425
6.
Niebur
,
G. L.
,
Feldstein
,
M. J.
,
Yuen
,
J. C.
, and
Keaveny
,
T. M.
, 2000, “
High Resolution Finite Element Models With Tissue Strength Asymmetry Predict Failure of Trabecular Bone
,”
J. Biomech.
0021-9290,
33
, pp.
1575
1583
.
7.
Pistoia
,
W.
,
van Rietbergen
,
B.
,
Laib
,
A.
, and
Ruegsegger
,
P.
, 2001, “
High Resolution Three-Dimensional-pQCT Images Can Be an Adequate Basis for In-Vitro MicroFE Analysis of Bone
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
176
183
.
8.
van Lenthe
,
G. H.
,
Stauber
,
M.
, and
Muller
,
R.
, 2006, “
Specimen-Specific Beam Models for Fast and Accurate Prediction of Human Trabecular Bone Mechanical Properties
,”
Bone
,
39
, pp.
1182
1189
.
9.
Silva
,
M. J.
,
Hayes
,
W. C.
, and
Gibson
,
L. J.
, 1995, “
The Effects of Non-Periodic Microstructure on the Elastic Properties of Two-Dimensional Cellular Solids
,”
Int. J. Mech. Sci.
0020-7403,
37
, pp.
1161
1177
.
10.
Silva
,
M. J.
, and
Gibson
,
L. J.
, 1997, “
Modeling the Mechanical Behavior of Vertebral Trabecular Bone: Effects of Age-Related Changes in Microstructure
,”
Bone
,
21
, pp.
191
199
.
11.
Ashby
,
M. F.
, 1983, “
The Mechanical Properties of Cellular Solids
,”
Metall. Mater. Trans. A
1073-5623,
14
, pp.
1755
1769
.
12.
Gibson
,
L.
, 1985, “
The Mechanical Behaviour of Cancellous Bone
,”
J. Biomech.
0021-9290,
18
, pp.
317
328
.
13.
Gibson
,
L. J.
, and
Ashby
,
M. F.
, 1988,
Cellular Solids: Structure and Properties
,
Pergamon
,
Oxford, England
.
14.
Christensen
,
R. M.
, 1986, “
Mechanics of Low Density Materials
,”
J. Mech. Phys. Solids
0022-5096,
34
, pp.
563
578
.
15.
Williams
,
J. L.
, and
Lewis
,
J. L.
, 1982, “
Properties and an Anisotropic Model of Cancellous Bone From the Proximal Tibia Epiphysis
,”
ASME J. Biomech. Eng.
0148-0731,
104
, pp.
50
56
.
16.
Beaupre
,
G. S.
, and
Hayes
,
W. C.
, 1985, “
Finite Element Analysis of a Three-Dimensional Open-Celled Model for Trabecular Bone
,”
ASME J. Biomech. Eng.
0148-0731,
107
, pp.
249
256
.
17.
Hollister
,
S. J.
,
Fyhrie
,
D. P.
,
Jepsen
,
K. J.
, and
Goldstein
,
S. A.
, 1991, “
Application of Homogenization Theory to the Study of Trabecular Bone Mechanics
,”
J. Biomech.
0021-9290,
24
, pp.
825
839
.
18.
Guo
,
X. -D. E.
,
McMahon
,
T. A.
,
Keaveny
,
T. M.
,
Hayes
,
W. C.
, and
Gibson
,
L. J.
, 1994, “
Finite Element Modeling of Damage Accumulation in Trabecular Bone Under Cyclic Loading
,”
J. Biomech.
0021-9290,
27
, pp.
145
155
.
19.
Werner
,
H. J.
,
Matin
,
H.
,
Behrend
,
D.
,
Schmitz
,
K. P.
, and
Schober
,
H. C.
, 1996, “
The Loss of Stiffness as Osteoporosis Progresses
,”
Med. Eng. Phys.
1350-4533,
18
, pp.
601
606
.
20.
Kowalczyk
,
P.
, 2003, “
Elastic Properties of Cancellous Bone Derived From Finite Element Models of Parameterized Microstructure Cells
,”
J. Biomech.
0021-9290,
36
, pp.
961
972
.
21.
Adachi
,
T.
,
Tomita
,
Y.
, and
Tanaka
,
M.
, 1998, “
Computational Simulation of Deformation Behavior of 2D-Lattice Continuum
,”
Int. J. Mech. Sci.
0020-7403,
40
, pp.
857
866
.
22.
Bouyge
,
F.
,
Jasiuk
,
I.
, and
Ostoja-Starzewski
,
M.
, 2001, “
A Micromechanically Based Couple-Stress Model of an Elastic Two-Phase Composite
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
1721
1735
.
23.
Bouyge
,
F.
,
Jasiuk
,
I.
,
Boccara
,
S.
, and
Ostoja-Starzewski
,
M.
, 2002, “
A Micromechanically Based Couple-Stress Model of an Elastic Orthotropic Two-Phase Composite
,”
Eur. J. Mech. A/Solids
0997-7538,
21
, pp.
465
481
.
24.
Fatemi
,
J.
,
van Keulen
,
F.
, and
Onck
,
P. R.
, 2002, “
Generalized Continuum Theories: Application to Stress Analysis in Bone
,”
Meccanica
0025-6455,
37
, pp.
385
396
.
25.
Fatemi
,
J.
,
Onck
,
P. R.
,
Poort
,
G.
, and
van Keulen
,
F.
, 2003, “
Cosserat Moduli of Anisotropic Cancellous Bone: A Micromechanical Analysis
,”
J. Phys. IV
1155-4339,
105
, pp.
273
280
.
26.
Tekoglu
,
C.
, and
Onck
,
P. R.
, 2003, “
A Comparison of Discrete and Cosserat Continuum Analyses for Cellular Materials
,”
Proceedings of MetFoam 2003, Cellular Metals: Manufacture, Properties, Applications
,
J.
Banhart
,
N. A.
Fleck
, and
A.
Mortensen
, eds.,
MIT
,
Berlin
, p.
339
.
27.
Yoo
,
A.
, and
Jasiuk
,
I.
, 2006, “
Couple-Stress Moduli of a Trabecular Bone Idealized as a 3D Periodic Cellular Network
,”
J. Biomech.
0021-9290,
39
, pp.
2241
2252
.
28.
Yang
,
J. F. C.
, and
Lakes
,
R. S.
, 1982, “
Experimental Study of Micropolar and Couple Stress Elasticity in Bone in Bending
,”
J. Biomech.
0021-9290,
15
, pp.
91
98
.
29.
Park
,
H. C.
, and
Lakes
,
R. S.
, 1986, “
Cosserat Micromechanics of Human Bone: Strain Redistribution by a Hydration-Sensitive Constituent
,”
J. Biomech.
0021-9290,
19
, pp.
385
397
.
30.
Park
,
H. C.
, and
Lakes
,
R. S.
, 1987, “
Torsion of a Micropolar Elastic Prism of Square Cross Section
,”
Int. J. Solids Struct.
0020-7683,
23
, pp.
485
503
.
31.
Lakes
,
R.
, 1982, “
Dynamical Study of Couple-Stress Effects in Human Compact Bone
,”
ASME J. Biomech. Eng.
0148-0731,
104
, pp.
6
11
.
32.
Lakes
,
R. S.
, 1995, “
Experimental Methods for Study of Cosserat Elastic Solids and Other Generalized Elastic Continua
,”
Continuum Models for Materials With Micro-Structure
,
H.
Muhlhaus
, ed.,
Wiley
,
New York
.
33.
Bonifasi-Lista
,
C.
, and
Cherkaev
,
E.
, 2008, “
Analytical Relations Between Effective Material Properties and Microporosity: Application to Bone Mechanics
,”
Int. J. Eng. Sci.
0020-7225,
46
, pp.
1239
1252
.
34.
Cowin
,
S. C.
, 1999, “
Bone Poroelasticity
,”
J. Biomech.
0021-9290,
32
, pp.
217
238
.
35.
Turner
,
C. H.
,
Cowin
,
S. C.
,
Rho
,
J. Y.
,
Ashman
,
R. B.
, and
Rice
,
J. C.
, 1990, “
The Fabric Dependence of the Orthotropic Elastic Constants of Cancellous Bone
,”
J. Biomech.
0021-9290,
23
, pp.
549
561
.
36.
Yang
,
G.
,
Kabel
,
J.
,
Van Rietbergen
,
B.
,
Odgaard
,
A.
,
Huiskes
,
R.
, and
Cowin
,
S. C.
, 1998, “
The Anisotropic Hooke’s Law for Cancellous Bone and Wood
,”
J. Elast.
0374-3535,
53
, pp.
125
146
.
37.
Zysset
,
P. K.
, 2003, “
A Review Of Morphology-Elasticity Relationships in Human Trabecular Bone: Theories and Experiments
,”
J. Biomech.
0021-9290,
36
, pp.
1469
1485
.
38.
Jaasma
,
M. J.
,
Bayraktar
,
H. H.
,
Neibur
,
G. L.
, and
Keaveny
,
T. M.
, 2002, “
Biomechanical Effects of Intraspecimen Variations in Tissue Modulus for Trabecular Bone
,”
J. Biomech.
0021-9290,
35
, pp.
237
246
.
39.
Tai
,
K.
,
Dao
,
M.
,
Suresh
,
S.
,
Palazoglu
,
A.
, and
Ortiz
,
C.
, 2007, “
Nanoscale Heterogeneity Promotes Energy Dissipation in Bone
,”
Nature Materials
,
6
, pp.
454
462
.
40.
Biot
,
M. A.
, 1941, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
0021-8979,
12
, pp.
155
164
.
41.
Hill
,
R.
, 1963, “
Elastic Properties of Reinforced Solids: Some Theoretical Considerations
,”
J. Mech. Phys. Solids
0022-5096,
11
, pp.
357
372
.
42.
Hashin
,
Z.
, 1983, “
Analysis of Composite Materials
,”
ASME J. Appl. Mech.
0021-8936,
50
, pp.
481
505
.
43.
Aboudi
,
J.
, 1991,
Mechanics of Composite Materials—A Unified Micromechanical Approach
,
Elsevier
,
New York
.
44.
Christensen
,
R. M.
, 1979,
Mechanics of Composite Materials
,
Wiley
,
New York
.
45.
Ostoja-Starzewski
,
M.
, 2006, “
Material Spatial Randomness—From Statistical to Representative Volume Element
,”
Probab. Eng. Mech.
0266-8920,
21
, pp.
112
132
.
46.
Ostoja-Starzewski
,
M.
, 2008,
Microstructural Randomness and Scaling in Mechanics of Materials
,
Chapman & Hall/CRC/Taylor & Francis
,
Boca Raton, FL, USA
.
47.
Huet
,
C.
, 1990, “
Application of Variational Concepts to Size Effects in Elastic Heterogeneous Bodies
,”
J. Mech. Phys. Solids
0022-5096,
38
, pp.
813
841
.
48.
Hazanov
,
S.
, and
Huet
,
C.
, 1994, “
Order Relationships for Boundary Conditions Effect in Heterogeneous Bodies Smaller Than Representative Volume
,”
J. Mech. Phys. Solids
0022-5096,
42
, pp.
1995
2011
.
49.
Hazanov
,
S.
, and
Amieur
,
M.
, 1995, “
On Overall Properties of Elastic Heterogeneous Bodies Smaller Than the Representative Volume
,”
Int. J. Eng. Sci.
0020-7225,
33
, pp.
1289
1301
.
50.
Hazanov
,
S.
, 1998, “
Hill Condition and Overall Properties of Composites
,”
Arch. Appl. Mech.
0939-1533,
68
, pp.
385
394
.
51.
Pahr
,
D. H.
, and
Zysset
,
P. K.
, 2008, “
Influence of Boundary Conditions on Computed Apparent Elastic Properties of Cancelous Bone
,”
Biomech. Model. Mechanobiol.
1617-7959,
7
, pp.
463
476
.
52.
Ostoja-Starzewski
,
M.
, 1999, “
Scale Effects in Materials With Random Distributions of Needles and Cracks
,”
Mech. Mater.
0167-6636,
31
, pp.
883
893
.
53.
Pecullan
,
S.
,
Gibiansky
,
L. V.
, and
Torquato
,
S.
, 1999, “
Scale Effects on the Elastic Behavior of Periodic and Hierarchical Two-Dimensional Composites
,”
J. Mech. Phys. Solids
0022-5096,
47
, pp.
1509
1542
.
54.
Jiang
,
M.
,
Alzebdeh
,
K.
,
Jasiuk
,
I.
, and
Ostoja-Starzewski
,
M.
, 2001, “
Scale and Boundary Conditions Effects in Elastic Properties of Random Composites
,”
Acta Mech.
0001-5970,
148
, pp.
63
78
.
55.
Ostoja-Starzewski
,
M.
,
Du
,
X.
,
Khisaeva
,
Z. F.
, and
Li
,
W.
, 2007, “
Comparisons of the Size of Representative Volume Element in Elastic, Plastic, Thermoelastic, and Permeable Random Microstructures
,”
Int. J. Multiscale Comp. Eng.
1543-1649,
5
, pp.
73
82
.
56.
Ranganathan
,
S. I.
, and
Ostoja-Starzewski
,
M.
, 2008, “
Scaling Function, Anisotropy and the Size of RVE in Elastic Random Polycrystals
,”
J. Mech. Phys. Solids
0022-5096,
56
, pp.
2773
2791
.
57.
Hollister
,
S. J.
, and
Kikuchi
,
N.
, 1992, “
A Comparison of Homogenization and Standard Mechanics Analyses for Periodic Porous Composites
,”
Comput. Mech.
0178-7675,
10
, pp.
73
95
.
58.
Harrigan
,
T. P.
,
Jasty
,
M.
,
Mann
,
R. W.
, and
Harris
,
W. H.
, 1988, “
Limitations of the Continuum Assumption in Cancellous Bone
,”
J. Biomech.
0021-9290,
21
, pp.
269
275
.
59.
Linde
,
F.
, and
Hvid
,
I.
, 1989, “
The Effect of Constraint on the Mechanical Behaviour of Trabecular Bone Specimens
,”
J. Biomech.
0021-9290,
22
, pp.
485
490
.
60.
Choi
,
K.
,
Kuhn
,
J. L.
,
Ciarelli
,
M. J.
, and
Goldstein
,
S. A.
, 1990, “
The Elastic Moduli of Human Subchondral, Trabecular, and Cortical Bone Tissue and the Size-Dependency of Cortical Bone Modulus
,”
J. Biomech.
0021-9290,
23
, pp.
1103
1113
.
61.
Odgaard
,
A.
, and
Linde
,
F.
, 1991, “
The Underestimation of Young’s Modulus in Compressive Testing of Cancellous Bone Specimens
,”
J. Biomech.
0021-9290,
24
, pp.
691
698
.
62.
Linde
,
F.
,
Hvid
,
I.
, and
Madsen
,
F.
, 1992, “
The Effect of Specimen Geometry on the Mechanical Behaviour of Trabecular Bone Specimens
,”
J. Biomech.
0021-9290,
25
, pp.
359
368
.
63.
Keaveny
,
T. M.
,
Borchers
,
R. E.
,
Gibson
,
L. J.
, and
Hayes
,
W. C.
, 1993, “
Trabecular Bone Modulus and Strength Can Depend on Specimen Geometry
,”
J. Biomech.
0021-9290,
26
, pp.
991
1000
.
64.
Zhu
,
M.
,
Keller
,
T. S.
, and
Spengler
,
D. M.
, 1994, “
Effects Of Specimen Load-Bearing and Free Surface Layers on the Compressive Mechanical Properties of Cellular Materials
,”
J. Biomech.
0021-9290,
27
, pp.
57
66
.
65.
Jacobs
,
C. R.
,
Davis
,
B. R.
,
Rieger
,
C. J.
,
Francis
,
J. J.
,
Saad
,
M.
, and
Fyhrie
,
D. P.
, 1999, “
The Impact of Boundary Conditions and Mesh Size on the Accuracy of Cancellous Bone Tissue Modulus Determination Using Large-Scale Finite-Element Modeling
,”
J. Biomech.
0021-9290,
32
, pp.
1159
1164
.
66.
Un
,
K.
,
Bevill
,
G.
, and
Keaveny
,
T. M.
, 2006, “
The Effects of Side-Artifacts on the Elastic Modulus of Trabecular Bone
,”
J. Biomech.
0021-9290,
39
, pp.
1955
1963
.
67.
Jiang
,
M.
,
Jasiuk
,
I.
, and
Ostoja-Starzewski
,
M.
, 2002, “
Apparent Elastic and Elastoplastic Behavior of Periodic Composites
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
199
212
.
68.
Jiang
,
M.
,
Jasiuk
,
I.
, and
Ostoja-Starzewski
,
M.
, 2002b, “
Apparent Thermal Conductivity of Periodic Two-Dimensional Composites
,”
Comput. Mater. Sci.
0927-0256,
25
, pp.
329
338
.
69.
Rho
,
J. Y.
,
Tsui
,
T. Y.
, and
Pharr
,
G. M.
, 1997, “
Elastic Properties of Human Cortical and Trabecular Lamellar Bone Measured by Nanoindentation
,”
Biomaterials
0142-9612,
18
, pp.
1325
1330
.
70.
Zysset
,
P. K.
,
Guo
,
X. E.
,
Hoffler
,
C. E.
,
Moore
,
K. E.
, and
Goldstein
,
S. A.
, 1999, “
Elastic Modulus and Hardness of Cortical and Trabecular Bone Lamellae Measured by Nanoindentation in the Human Femur
,”
J. Biomech.
0021-9290,
32
, pp.
1005
1012
.
71.
Jasiuk
,
I.
, 1995, “
Cavities Vis-À-Vis Rigid Inclusions: Elastic Moduli of Materials With Polygonal Inclusions
,”
Int. J. Solids Struct.
0020-7683,
32
, pp.
407
422
.
You do not currently have access to this content.