Advancements in technologies for assessing biomechanics at the cellular level have led to discoveries in mechanotransduction and the investigation of cell mechanics as a biomarker for disease. With the recent development of an integrated optical tweezer with micron resolution particle image velocimetry, the opportunity to apply controlled multiaxial stresses to suspended single cells is available (Nève, N., Lingwood, J. K., Zimmerman, J., Kohles, S. S., and Tretheway, D. C., 2008, “The μPIVOT: An Integrated Particle Image Velocimetry and Optical Tweezers Instrument for Microenvironment Investigations,” Meas. Sci. Technol., 19(9), pp. 095403). A stress analysis was applied to experimental and theoretical flow velocity gradients of suspended cell-sized polystyrene microspheres demonstrating the relevant geometry of nonadhered spherical cells, as observed for osteoblasts, chondrocytes, and fibroblasts. Three flow conditions were assessed: a uniform flow field generated by moving the fluid sample with an automated translation stage, a gravity driven flow through a straight microchannel, and a gravity driven flow through a microchannel cross junction. The analysis showed that fluid-induced stresses on suspended cells (hydrodynamic shear, normal, and principal stresses in the range of 0.02–0.04 Pa) are generally at least an order of magnitude lower than adhered single cell studies for uniform and straight microchannel flows (0.5–1.0 Pa). In addition, hydrostatic pressures dominate (1–100 Pa) over hydrodynamic stresses. However, in a cross junction configuration, orders of magnitude larger hydrodynamic stresses are possible without the influence of physical contact and with minimal laser trapping power.

1.
Lee
,
G. Y.
, and
Lim
,
C. T.
, 2007, “
Biomechanics Approaches to Studying Human Diseases
,”
Trends Biotechnol.
0167-7799,
25
(
3
), pp.
111
118
.
2.
Afoke
,
N. Y.
,
Byers
,
P. D.
, and
Hutton
,
W. C.
, 1987, “
Contact Pressures in the Human Hip Joint
,”
J. Bone Joint Surg. Br.
0301-620X,
69
, pp.
536
541
.
3.
Hodge
,
W. A.
,
Carlson
,
K. L.
,
Fijan
,
R. S.
,
Burgess
,
R. G.
,
Riley
,
P. O.
,
Harris
,
W. H.
, and
Mann
,
R. W.
, 1989, “
Contact Pressures From an Instrumented Hip Endoprosthesis
,”
J. Bone Joint Surg. Am.
,
71
, pp.
1378
1386
. 0021-9355
4.
Buschmann
,
M. D.
,
Gluzband
,
Y. A.
,
Grodzinsky
,
A. J.
, and
Hunziker
,
E. B.
, 1995, “
Mechanical Compression Modulates Matrix Biosynthesis in Chondrocyte/Agarose Culture
,”
J. Cell Sci.
,
108
, pp.
1497
1508
. 0021-9533
5.
Ehrlich
,
M. G.
,
Armstrong
,
A. L.
,
Treadwell
,
B. V.
, and
Mankin
,
H. J.
, 1987, “
The Role of Proteases in the Pathogenesis of Osteoarthritis
,”
J. Rheumatol.
0315-162X,
14
, pp.
30
32
.
6.
Buckwalter
,
J. A.
,
Martin
,
J. A.
, and
Brown
,
T. D.
, 2006, “
Perspectives on Chondrocyte Mechanobiology and Osteoarthritis
,”
Biorheology
0006-355X,
43
, pp.
603
609
.
7.
Kohles
,
S. S.
,
Wilson
,
C. G.
, and
Bonassar
,
L. J.
, 2007, “
A Mechanical Composite Spheres Analysis of Engineered Cartilage Dynamics
,”
J. Biomech. Eng.
0148-0731,
129
(
4
), pp.
473
480
.
8.
Cross
,
S. E.
,
Jin
,
Y. -S.
,
Rao
,
J.
, and
Gimzewski
,
J. K.
, 2007, “
Nanomechanical Analysis of Cells From Cancer Patients
,”
Nat. Nanotechnol.
1748-3387,
2
, pp.
780
783
.
9.
Sipe
,
J. D.
, 2002, “
Tissue Engineering and Reparative Medicine
,”
Ann. N. Y. Acad. Sci.
,
961
, pp.
1
9
. 0077-8923
10.
Hunt
,
T. P.
, and
Westervelt
,
R. M.
, 2006, “
Dielectrophoresis Tweezers for Single Cell Manipulation
,”
Biomed. Microdevices
1387-2176,
8
(
3
), pp.
227
230
.
11.
Evander
,
M.
,
Johansson
,
L.
,
Lilliehorn
,
T.
,
Piskur
,
J.
,
Lindvall
,
M.
,
Johansson
,
S.
,
Almqvist
,
M.
,
Laurell
,
T.
, and
Nilsson
,
J.
, 2007, “
Noninvasive Acoustic Cell Trapping in a Microfluidic Perfusion System for Online Bioassays
,”
Anal. Chem.
0003-2700,
79
(
7
), pp.
2984
91
.
12.
Lutz
,
B. R.
,
Chen
,
J.
, and
Schwartz
,
D. T.
, 2006, “
Hydrodynamic Tweezers: 1. Noncontact Trapping of Single Cells Using Steady Streaming Microeddies
,”
Anal. Chem.
0003-2700,
78
(
15
), pp.
5429
5435
.
13.
Walker
,
L. M.
,
Holm
,
A.
,
Cooling
,
L.
,
Maxwell
,
L.
,
Oberg
,
A.
,
Sundqvist
,
T.
, and
El Haj
,
A. J.
, 1999, “
Mechanical Manipulation of Bone and Cartilage Cells With Optical Tweezers
,”
FEBS Lett.
0014-5793,
459
, pp.
39
42
.
14.
Guck
,
J.
,
Ananthakrishnan
,
R.
,
Mahmood
,
H.
,
Moon
,
T. J.
,
Cunningham
,
C. C.
, and
Kas
,
J.
, 2001, “
The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells
,”
Biophys. J.
0006-3495,
81
, pp.
767
784
.
15.
Bao
,
G.
, and
Suresh
,
S.
, 2003, “
Cell and Molecular Mechanics of Biological Materials
,”
Nature Mater.
1476-1122,
2
(
11
), pp.
715
725
.
16.
Nève
,
N.
,
Lingwood
,
J. K.
,
Zimmerman
,
J.
,
Kohles
,
S. S.
, and
Tretheway
,
D. C.
, 2008, “
The μPIVOT: An Integrated Particle Image Velocimetry and Optical Tweezers Instrument for Microenvironment Investigations
,”
Meas. Sci. Technol.
0957-0233,
19
(
9
), p.
095403
.
17.
Kohles
,
S. S.
,
Nève
,
N.
,
Lingwood
,
J. K.
,
Zimmerman
,
J.
,
Winn
,
S. R.
,
Zelick
,
R. D.
, and
Tretheway
,
D. C.
, 2008, “
An Integrated Optical Instrument and Microfluidics for Isolated Chondrocyte, Osteoblast, and Fibroblast Biomechanics
,”
Transactions of the 54th Annual Meeting of the ORS
, Vol.
33
, Paper No. 1168.
18.
Nève
,
N.
,
Lingwood
,
J. K.
,
Winn
,
S. R.
,
Tretheway
,
D. C.
, and
Kohles
,
S. S.
, 2007, “
Microfluidics Supporting an Optical Instrument for Multimodal Single Cell Biomechanics
,”
ASME
Paper No, 42004.
19.
Zimmerman
,
J. D.
,
Kohles
,
S. S.
, and
Tretheway
,
D. C.
, 2008, “
Computational Microfluidic Models Supporting Studies in Cell Biomechanics
,”
Proceedings of the Sigma Xi, Annual Meeting and Student Research Conference
, Washington, D.C., Nov. 20–23, Paper No. EN-04.
20.
Neuman
,
K. C.
, and
Block
,
S. M.
, 2004, “
Review Article: Optical Trapping
,”
Rev. Sci. Instrum.
0034-6748,
75
(
9
), pp.
2787
2809
.
21.
Santiago
,
J. G.
,
Wereley
,
S. T.
,
Meinhart
,
C. D.
,
Beebe
,
D. J.
, and
Adrian
,
R. J.
, 1998, “
A Particle Image Velocimetry System for Microfluidics
,”
Exp. Fluids
0723-4864,
25
, pp.
316
319
.
22.
Meinhart
,
C. D.
,
Wereley
,
S. T.
, and
Santiago
,
J. G. A.
, 2000, “
PIV Algorithm for Estimating Time-Averaged Velocity Fields
,”
ASME J. Fluids Eng.
0098-2202,
122
(
2
), pp.
285
289
.
23.
Papanastasiou
,
T. C.
,
Georgio
,
G. C.
, and
Alexandrou
,
A. N.
, 2000,
Viscous Fluid Flow
,
CRC
,
New York
.
24.
White
,
F. M.
, 2006,
Viscous Fluid Flow
, 3rd ed.,
McGraw-Hill
,
New York
.
25.
Leal
,
L. G.
, 2007,
Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes
,
Cambridge University Press
,
New York
.
26.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
, 1960,
Transport Phenomena
,
Wiley
,
New York
.
27.
Happel
,
J.
, and
Brenner
,
H.
, 1983,
Low Reynolds Number Hydrodynamics: With Special Application to Particulate Media
,
Noordhoff
,
Groningen
.
28.
Patankar
,
S. V.
, and
Spalding
,
D. B.
, 1972, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
0017-9310,
15
, pp.
1787
1806
.
29.
Cook
,
R. D.
, and
Young
,
W. C.
, 1985,
Advanced Mechanics of Materials
,
Macmillan
,
New York
.
30.
Westerweel
,
J.
,
Geelhoed
,
P. F.
, and
Lindken
,
R.
, 2004, “
Single-Pixel Resolution Ensemble Correlation for Micro-PIV Applications
,”
Exp. Fluids
0723-4864,
37
, pp.
375
384
.
31.
Wereley
,
S.
,
Meinhart
,
C.
,
Gui
,
L.
,
Tretheway
,
D. C.
, and
Sud
,
A.
, 2005, “
Single Pixel Evaluation of Microchannel Flows
,”
Proceedings of the IMECE
, Paper No. 83065.
32.
Su
,
S. S.
, and
Schmid-Schönbein
,
G. W.
, 2008, “
Fluid Stresses on the Membrane of Migrating Leukocytes
,”
Ann. Biomed. Eng.
0090-6964,
36
(
2
), pp.
298
307
.
33.
Leyton-Mange
,
J.
,
Yang
,
S.
,
Hoskins
,
M. H.
,
Kunz
,
R. F.
,
Zahn
,
J. D.
, and
Dong
,
C.
, 2006, “
Design of a Side-View Particle Imaging Velocimetry Flow System for Cell-Substrate Adhesion Studies
,”
J. Biomech. Eng.
0148-0731,
128
(
2
), pp.
271
278
.
34.
Neuman
,
K. C.
,
Chadd
,
E. H.
,
Liou
,
G. F.
,
Bergman
,
K.
, and
Block
,
S. M.
, 1999, “
Characterization of Photodamage to Escherichia Coli in Optical Traps
,”
Biophys. J.
0006-3495,
77
(
5
), pp.
2856
2863
.
You do not currently have access to this content.