In this study, a hybridized neuro-genetic optimization methodology realized by embedding finite element analysis (FEA) trained artificial neural networks (ANN) into genetic algorithms (GA), is used to optimize temperature control in a ceramic based continuous flow polymerase chain reaction (CPCR) device. The CPCR device requires three thermally isolated reaction zones of 94°C, 65°C, and 72°C for the denaturing, annealing, and extension processes, respectively, to complete a cycle of polymerase chain reaction. The most important aspect of temperature control in the CPCR is to maintain temperature distribution at each reaction zone with a precision of ±1°C or better, irrespective of changing ambient conditions. Results obtained from the FEA simulation shows good comparison with published experimental work for the temperature control in each reaction zone of the microfluidic channels. The simulation data are then used to train the ANN to predict the temperature distribution of the microfluidic channel for various heater input power and fluid flow rate. Once trained, the ANN analysis is able to predict the temperature distribution in the microchannel in less than 20min, whereas the FEA simulation takes approximately 7h to do so. The final optimization of temperature control in the CPCR device is achieved by embedding the trained ANN results as a fitness function into GA. Finally, the GA optimized results are used to build a new FEA model for numerical simulation analysis. The simulation results for the neuro-genetic optimized CPCR model and the initial CPCR model are then compared. The neuro-genetic optimized model shows a significant improvement from the initial model, establishing the optimization method’s superiority.

1.
Mullis
,
K. B.
, and
Faloona
,
F. A.
, 1987, “
Specific Synthesis of DNA in Vitro via a Polymerase-Catalyzed Chain Reaction
,”
Methods Enzymol.
0076-6879,
155
, pp.
335
350
.
2.
Sambrook
,
J.
, and
Russel
,
D. W.
, 2001,
Molecular Cloning: A Laboratory Manual
,
Cold Spring Harbor Laboratory Press
, Cold Spring Harbor, NY.
3.
Markham
,
A. F.
, 1993, “
The Polymerase Chain Reaction: A Tool for Molecular Medicine
,”
Br. Med. J.
0007-1447,
306
, pp.
441
447
.
4.
Arnheim
,
N.
,
White
,
T.
, and
Rainey
,
W. E.
, 1990, “
Application of PCR: Organismal and Population Biology
,”
BioScience
0006-3568,
40
(
3
), pp.
174
182
.
5.
U.S. Congress, Office of Technology Assessment
, 1990,
Genetic Witness: Forensic Uses of DNA Tests, OTA-BA-438
,
U.S. Government Printing Office
, Washington, DC.
6.
Housman
,
D.
, 1995, “
Human DNA Polymorphism
,”
N. Engl. J. Med.
0028-4793,
332
(
5
), pp.
318
320
.
7.
Naber
,
S. P.
, 1994, “
Molecular Pathology: Diagnosis of Infectious Disease
,”
N. Engl. J. Med.
0028-4793,
331
(
18
), pp.
1212
1215
.
8.
Lagally
,
E. T.
,
Scherer
,
J. R.
,
Blazej
,
R. G.
, and
Mathies
,
R. A.
, 2003, “
Genetic Analysis Using Portable PCR-CE Microsystem
,”
Proceedings 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems
, Squaw Valley, CA, October 5–9, pp.
1283
1286
.
9.
Lee
,
N. Y.
,
Yamada
,
M.
, and
Seki
,
M.
, 2003, “
Purification of Human Genomic DNA from a Single Hair Root on a Microdevice and Direct Amplification of its D1S80 Locus
,”
Proceedings 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems
, Squaw Valley, CA, October 5–9, pp.
721
724
.
10.
Chen
,
L.
, and
Ren
,
J.
, 2004, “
High-Throughput DNA Analysis by Microchip Electrophoresis
,”
Comb. Chem. High Throughput Screening
1386-2073,
7
(
1
), pp.
29
43
.
11.
Zhang
,
Q.
,
Wang
,
W.
,
Zhang
,
H.
, and
Wang
,
Y.
, 2002, “
Temperature Analysis of Continuous-Flow Micro-PCR Based on FEA
,”
Sens. Actuators B
0925-4005,
82
(
1
), pp.
75
81
.
12.
Hashimoto
,
M.
,
Chen
,
P. C.
,
Mitchell
,
M. W.
,
Nikitopoulus
,
D. E.
,
Soper
,
S. A.
, and
Murphy
,
M. C.
, 2004, “
Rapid PCR in a Continuous Flow Device
,”
Lab Chip
1473-0197,
4
(
6
), pp.
638
645
.
13.
Lin
,
Y. C.
,
Yang
,
C. C.
, and
Huang
,
M. Y.
, 2000, “
Simulation and Experimental Validation of Micro Polymerase Chain Reaction Chips
,”
Sens. Actuators B
0925-4005,
71
(
1–2
), pp.
127
133
.
14.
Sadler
,
D. J.
,
Changrani
,
R.
,
Roberts
,
P.
,
Chou
,
C. F.
, and
Zenhausern
,
F.
, 2003, “
Thermal Management of BioMEMS: Temperature Control for Ceramic-Based PCR and DNA Detection Devices
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
26
(
2
), pp.
309
316
.
15.
Chou
,
C. F.
,
Changrani
,
R.
,
Roberts
,
P.
,
Sadler
,
D.
,
Burdon
,
J.
,
Zenhausern
,
F.
,
Lin
,
S.
,
Mulholland
,
A.
,
Swami
,
N.
, and
Terbrueggen
,
R.
, 2002, “
A Miniaturized Cyclic PCR Device-Modeling and Experiments
,”
Microelectron. Eng.
0167-9317,
61–62
, pp.
921
925
.
16.
Baratti
,
R.
,
Cannas
,
B.
,
Fanni
,
A.
,
Pintus
,
M.
,
Sechi
,
G. M.
, and
Toreno
,
N.
, 2003, “
River Flow Forecast for Reservoir Management Through Neural Networks
,”
Neurocomputing
0925-2312,
55
(
3–4
), pp.
421
437
.
17.
Ferreira
,
P. M.
,
Faria
,
E. A.
, and
Ruano
,
A. E.
, 2002, “
Neural Network Models in Greenhouse Air Temperature Prediction
,”
Neurocomputing
0925-2312,
43
(
1–4
), pp.
51
75
.
18.
Jain
,
L. C.
, and
Vemuri
,
V. R.
, 1998,
Industrial Applications of Neural Networks
, International Series on Computational Intelligence,
CRC
, Boca Raton, FL.
19.
Arunasalam
,
P.
,
Seetharamu
,
K. N.
, and
Azid
,
I. A.
, 2005, “
Determination of Thermal Compact Model via Evolutionary Genetic Methods
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
28
(
2
), pp.
345
352
.
20.
Jeevan
,
K.
,
Parthiban
,
A.
,
Seetharamu
,
K. N.
,
Azid
,
I. A.
, and
Quadir
,
G. A.
, 2002, “
Optimization of PCB Component Placement Using Genetic Algorithms
,”
J. Electron. Manuf.
0960-3131,
11
(
1
), pp.
69
79
.
21.
Goldberg
,
D. E.
, 1989,
Genetic Algorithms in Search, Optimization and Machine Learning
,
Addison-Wesley Longman Publishing Co.
, Boston, MA.
22.
Mitchell
,
M.
, 1996,
An Introduction to Genetic Algorithms
,
MIT Press
, Cambridge, MA.
23.
Wall
,
M.
, 1999, “
GAlib: A C++ Library of Genetic Algorithm Components
,” http://lancet.mit.edu/ga/http://lancet.mit.edu/ga/
24.
Kumar
,
G. S.
,
Kalra
,
P. K.
, and
Dhande
,
S. G.
, 2004, “
Hybrid Computation Using Neuro Genetic and Classical Optimization for B-Spline Curve and Surface Fitting
,”
International Journal of Hybrid Intelligent Systems
,
1
(
4
), pp.
176
188
.
25.
Cakar
,
T.
,
Yildirim
,
M.
, and
Barut
,
M.
, 2005, “
A Neuro-Genetic Approach to Design and Planning of a Manufacturing Cell
,”
J. Intell. Manuf.
0956-5515,
16
(
4–5
), pp.
453
462
.
26.
Rafiee
,
A.
,
Moradi
,
M. H.
, and
Farzaneh
,
M. R.
, 2004, “
Novel Genetic-Neuro-Fuzzy Filter for Speckle Reduction From Sonography Images
,”
J. Digit Imaging
0897-1889,
17
(
4
), pp.
292
300
.
You do not currently have access to this content.