Quantification of knee motion under dynamic, in vivo loaded conditions is necessary to understand how knee kinematics influence joint injury, disease, and rehabilitation. Though recent studies have measured three-dimensional knee kinematics by matching geometric bone models to single-plane fluoroscopic images, factors limiting the accuracy of this approach have not been thoroughly investigated. This study used a three-step computational approach to evaluate theoretical accuracy limitations due to the shape matching process alone. First, cortical bone models of the femur, tibia/fibula, and patella were created from CT data. Next, synthetic (i.e., computer generated) fluoroscopic images were created by ray tracing the bone models in known poses. Finally, an automated matching algorithm utilizing edge detection methods was developed to align flat-shaded bone models to the synthetic images. Accuracy of the recovered pose parameters was assessed in terms of measurement bias and precision. Under these ideal conditions where other sources of error were eliminated, tibiofemoral poses were within 2mm for sagittal plane translations and 1.5deg for all rotations while patellofemoral poses were within 2mm and 3deg. However, statistically significant bias was found in most relative pose parameters. Bias disappeared and precision improved by a factor of two when the synthetic images were regenerated using flat shading (i.e., sharp bone edges) instead of ray tracing (i.e., attenuated bone edges). Analysis of absolute pose parameter errors revealed that the automated matching algorithm systematically pushed the flat-shaded bone models too far into the image plane to match the attenuated edges of the synthetic ray-traced images. These results suggest that biased edge detection is the primary factor limiting the theoretical accuracy of this single-plane shape matching procedure.

1.
Centers for Disease Control and Prevention, 2003, “
Targeting Arthritis: The Nation’s Leading Cause of Disability
,” National Center for Chronic Disease Prevention and Health Promotion, Atlanta, Georgia, http://www.cdc.gov/nccdphp/aag/pdf/aag̱arthritis2003.pdfhttp://www.cdc.gov/nccdphp/aag/pdf/aag̱arthritis2003.pdf.
2.
Hasler
,
E. M.
,
Herzog
,
W.
,
Leonard
,
T. R.
,
Stano
,
A.
, and
Nguyen
,
H.
, 1998, “
In Vivo Knee Joint Loading and Kinematics Before and After ACL Transection in an Animal Model
,”
J. Biomech.
0021-9290,
31
, pp.
253
262
.
3.
Tashman
,
S.
,
Anderst
,
W.
, and
Kolowich
,
P.
, 1999, “
Severity of OA Related to Magnitude of Dynamic Instability in ACL-Deficient Dogs
,”
Transactions of the 46th Annual Meeting of the Orthopaedic Research Society
, Orlando, FL, pp.
257
.
4.
Cappozzo
,
A.
, 1991, “
Three-Dimensional Analysis of Human Walking: Experimental Methods and Associated Artifacts
,”
Hum. Mov. Sci.
0167-9457,
10
, pp.
589
602
.
5.
Cappozzo
,
A.
,
Cappello
,
A.
,
Croce
,
U. D.
, and
Pensalfini
,
F.
, 1997, “
Surface Marker Cluster Design Criteria for 3-D Bone Movement Reconstruction
,”
IEEE Trans. Biomed. Eng.
0018-9294,
44
, pp.
1165
1174
.
6.
Fuller
,
J.
,
Liu
,
L. J.
,
Murphy
,
M. C.
, and
Mann
,
R. W.
, 1997, “
A Comparison of Lower-Extremity Skeletal Kinematics Measured using Skin- and Pin-Mounted Markers
,”
Hum. Mov. Sci.
0167-9457,
16
, pp.
219
242
.
7.
Lucchitti
,
L.
,
Cappozzo
,
A.
,
Cappello
,
A.
, and
Croce
,
U. D.
, 1998, “
Skin Movement Artifact Assessment and Compensation in the Estimation of Knee Joint Kinematics
,”
J. Biomech.
0021-9290,
31
, pp.
977
984
.
8.
Lu
,
L. W.
, and
O’Connor
,
J. J.
, 1999, “
Bone Position Estimation from Skin Marker Coordinates using Global Optimization with Joint Constraints
,”
J. Biomech.
0021-9290,
32
, pp.
129
134
.
9.
Andriacchi
,
T. P.
,
Alexander
,
E. J.
,
Toney
,
M. K.
,
Dyrby
,
C. O.
, and
Sum
,
J.
, 1998, “
A Point Cluster Method for In Vivo Motion Analysis: Applied to a Study of Knee Kinematics
,”
J. Biomech.
0021-9290,
120
, pp.
743
749
.
10.
Alexander
,
E. J.
, and
Andriacchi
,
T. P.
, 2001, “
Correcting for Deformation in Skin-Based Marker Systems
,”
J. Biomech.
0021-9290,
34
, pp.
355
362
.
11.
Banks
,
S. A.
, and
Hodge
,
W. A.
, 1996, “
Accurate Measurement of Three-Dimensional Knee Replacement Kinematics using Single-Plane Fluoroscopy
,”
IEEE Trans. Biomed. Eng.
0018-9294,
43
, pp.
638
649
.
12.
Banks
,
S. A.
,
Markovich
,
G. D.
, and
Hodge
,
W. A.
, 1997, “
In Vivo Kinematics of Cruciate-Retaining and Substituting Knee Arthroplasties
,”
J. Arthroplasty
0883-5403,
12
, pp.
297
304
.
13.
Hoff
,
W. A.
,
Komistek
,
R. D.
,
Dennis
,
D. A.
,
Gabriel
,
S. M.
, and
Walker
,
S. A.
, 1998, “
Three-Dimensional Determination of Femoral-Tibial Contact Positions under In Vivo Conditions using Fluoroscopy
,”
Clin. Biomech. (Los Angel. Calif.)
0191-7870,
13
, pp.
455
472
.
14.
Sarojak
,
M.
,
Hoff
,
W.
,
Komistek
,
R.
,
Dennis
,
D.
, 1999 “
Interactive System for Kinematic Analysis of Artificial Joint Implants
,”
Biomed. Sci. Instrum.
0067-8856,
35
, pp.
9
14
.
15.
Mahfouz
,
M. R.
,
Hoff
,
W. A.
,
Komistek
,
R. D.
, and
Dennis
,
D. A.
, 2003, “
A Robust Method for Registration of Three-Dimensional Knee Implant Models to Two-Dimensional Fluoroscopy Images
,”
IEEE Trans. Med. Imaging
0278-0062,
22
, pp.
1561
1584
.
16.
You
,
B.-M.
,
Siy
,
P.
,
Anderst
,
W.
, and
Tashman
,
S.
, 2001, “
In Vivo Measurement of 3D Skeletal Kinematics from Sequences of Biplane Radiographs: Application to Knee Kinematics
,”
IEEE Trans. Med. Imaging
0278-0062,
20
, pp.
514
525
.
17.
Anderst
,
W. J.
, and
Tashman
,
S.
, 2003, “
A Method to Estimate In Vivo Dynamic Articular Surface Interaction
,”
J. Biomech.
0021-9290,
36
, pp.
1291
1299
.
18.
Tashman
,
S.
, and
Anderst
,
W.
, 2003, “
In Vivo Measurement of Dynamic Joint Motion using High Speed Biplane Radiography and CT: Application to Canine ACL Deficiency
,”
J. Biomech. Eng.
0148-0731,
125
, pp.
238
245
.
19.
Kanisawa
,
I.
,
Banks
,
A. Z.
,
Banks
,
S. A.
,
Moriya
,
H.
, and
Tsuchiya
,
A.
, 2003, “
Weight-Bearing Knee Kinematics in Subjects with Two Types of Anterior Cruciate Ligament Reconstructions
,”
Knee Surg. Sports Traumatol. Arthrosc
0942-2056,
11
, pp.
16
22
.
20.
Komistek
,
R. D.
,
Dennis
,
D. A.
,
Mahfouz
,
M.
, 2003, “
In Vivo Fluoroscopic Analysis of the Normal Human Knee
,”
Clin. Orthop. Relat. Res.
0009-921X,
410
, pp.
69
81
.
21.
Mahfouz
,
M. R.
,
Traina
,
S. M.
,
Komistek
,
R. D.
, and
Dennis
,
D. A.
, 2003, “
In Vivo Determination of Knee Kinematics in Patients with a Hamstring or Patellar Tendon ACL Graft
,”
Journal of Knee Surgery
,
16
, pp.
197
202
.
22.
Tupling
,
S. J.
,
Pierrynowski
,
M. R.
, 1987, “
Use of Cardan Angles to Locate Rigid Bodies in Three-Dimensional Space
,”
Med. Biol. Eng. Comput.
0140-0118,
25
, pp.
527
532
.
23.
Kaptein
,
B. L.
,
Valstar
,
E. R.
,
Stoel
,
B. C.
,
Rozing
,
P. M.
, and
Reiber
,
J. H. C.
, 2003, “
A New Model-Based RSA Method Validated using CAD Models and Models from Reversed Engineering
,”
J. Biomech.
0021-9290,
366
, pp.
873
882
.
24.
Fregly
,
B. J.
,
Sawyer
,
W. G.
,
Harman
,
M. K.
, and
Banks
,
S. A.
, 2004, “
Computational Wear Prediction of a Total Knee Replacement from In Vivo Kinematics
,”
J. Biomech.
0021-9290,
38
, pp.
305
314
.
You do not currently have access to this content.